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Alliance Formation in Contests with 
Incomplete Information

Abstract

This paper studies a contest in which players with unobservable types may form an 
alliance in a pre-stage of the game to join their forces and compete for a prize. We 
characterize the pure strategy equilibria of this game of incomplete information. We 
show that if the formation of an alliance is voluntary, players do not reveal private 
information in the process of alliance formation in any equilibrium. In this case there 
exists a pooling equilibrium without alliances with a unique eff ort choice in the contest 
and there exist equilibria in which all types prefer to form an alliance. If the formation 
of an alliance can be enforced by one player with positive probability there exists an 
equilibrium in which only the low types prefer to form an alliance.

JEL Classifi cation: C72, D72, D74, D82
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1 Introduction

The central element of the model presented in this paper is a rent seeking
game as introduced by Tullock (1980). Jia, Skaperdas, and Vaidya (2013)
argue that the Tullock-contest success function is well motivated by an ax-
iomatic foundation, by stochastic functional forms or by microfounded search
models. Without the simple structure of the Tullock-contest success function
the model studied in the paper at hand does not seem to be tractable. There
is a large number of contributions to the literature on rent seeking games
with asymmetric valuations1 and a smaller number number of contributions
in which individual valuations are private information, see for example Hurley
and Shogren (1998) for one sided incomplete information. Malueg and Yates
(2004) study a model in which the prior of the private values is potentially
correlated. Ewerhart (2010) fully characterizes the Bayesian equilibrium for
symmetric rent-seeking contests with independent private valuations and Ew-
erhart (2014) shows uniqueness of the equilibrium for continuous types. Fey
(2008) and Wasser (2013) introduce informational asymmetries on the costs
of effort provision. In Morath and Münster (2013) players may acquire in-
formation on their valuations, and opponents observe whether or not infor-
mation was acquired but do not learn the information. The central question
which is studied in the paper which I offer is in how far agents truthfully
reveal their private information in a pre-stage and in which way this influ-
ences behavior in the subsequent contest. Katsenos (2009) studies agents
who send a signal on their private information before entering the contest.
He shows that a separation of types in equilibrium is only possible, if op-
ponents are weak with an a priori high probability. In this paper we allow
for any probability on the set of types, our results do not depend on this
probability. Zhang (2008) and Münster (2009) study a repeated contest in
which the level of effort provision in the first stage reveals information on
the private valuation in the second stage. Münster (2009) finds that high
ability contestants aim at concealing their type by choosing a low effort in
the first stage in equilibrium. Skaperdas (1998) studies a model of alliance
formation between three players who compete for one prize.2 In his model
players have heterogeneous and observable types. Skaperdas gives sufficient
conditions for the contest success function such that only ‘weak’ types re-
spectively only ‘strong’ types voluntarily form an alliance. Herbst, Konrad,
and Morath (2015) test a similar version of this model in an experimental

1See Hillman and Riley (1989), Hirshleifer (1989), Hurley (1998), Suen (1989) to name
only a small subset.

2Skaperdas (1998) also studies multiple prize contests, which are not covered by the
paper at hand.
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setup but restrict all players to have the same valuation. Yet their experi-
mental findings indicate that agents have some underlying and unobservable
type which both influences the level of effort provision and causes a selection
effect in the first stage of the game. The model which we present in the next
section assumes an underlying unobservable type and analyzes the sequen-
tial Bayesian game. We show that if alliance formation is voluntary, type
contingent alliance-formation is strictly unstable for a standard contest suc-
cess function. In contrast the setup of Skaperdas (1998) implies that alliance
formation is weakly stable for both weak and strong players, if the standard
success function is applied. If the formation of an alliance can be enforced
with some probability, as in Herbst, Konrad, and Morath (2015), we derive
a lower bound for the strong type such that their empirical finding can be
supported by an equilibrium.

2 Model

Assume that player i = 1, 2, 3 is a risk neutral expected utility maximizer and
that i’s preferences for a lottery that allocates one prize to i with probability
p ∈ [0, 1] is represented by the function

ui (p, vi) = p · vi, i = 1, 2, 3

for vi ∈ {1, v̄}, v̄ ≥ 1. One motive for v̄ > 1 could be the ’joy of winning’3,
where we would regard v̄ close to one. We characterize a player with vi = 1
as ‘weak’ and a player with vi = v̄ as ‘strong’. The valuation vi is known
only to player i. The commonly known independent and identical a priori
probability of receiving vi = 1 is denoted by q ∈ (0, 1).

The game consists of two stages; in the first stage players one and two
may publicly declare whether or not they are willing to form an alliance.
Player i declares ai = yes, if he prefers to form an alliance and ai = no
otherwise. If no player prefers to form an alliance, no alliance forms. If one
player prefers and the other player does not prefer to form an alliance, the
alliance forms with probability γ ∈ [0, 1].4 If both players prefer to form an
alliance, the alliance forms with certainty. After stage 1 all players observe
whether or not players one and two prefer an alliance and whether or not the
alliance actually forms. We denote the event of alliance formation by A = A
and its complement by A = ¬A. The publicly available information of stage
1 is captured by a = (a1, a2,A). In the second stage the contest takes place

3See Sheremeta (2010) and the literature cited therein for several experiments that
support the hypothesis of non-monetary utility of winning.

4In Skaperdas (1998), γ = 0, while in Herbst, Konrad, and Morath (2015), γ = 1
2 .
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and each player i simultaneously chooses a number ei ≥ 0. The rules of the
contest depend on whether players one and two form an alliance or not.

Payoffs

We consider the standard Tullock contest success function, where pi(e) =
ei∑
j ej

for e :
∑

j ej > 0 and pi(e) = 1
3
if
∑

j ej = 0. The probability that

player three wins the contest is given by pi(e) in any case; the probility that
players one or two win the contest is given by pi(e), if there is no alliance.
Then, the utility function is given by

ui(e1, e2, e3|¬A) = ei
e1 + e2 + e3

· vi − ei , i = 1, 2, 3 .

We assume that if the alliance forms and one member of the alliance wins the
contest, the prize is distributed with uniform probability among all members
of the alliance.5

If an alliance between players one and two forms and
∑

j ej > 0, players
1 and 2 expect to receive

ui(e1, e2, e3|A) = e1 + e2
e1 + e2 + e3

· vi
2
− ei , i = 1, 2 .

If an alliance forms but
∑

j ej = 0, players 1 and 2 expect to receive

ui(0|A) = 1

2
· vi
2
, i = 1, 2 and u3(0|A) = 1

2
· v3 .

If we would model the within alliance allocation of the prize using a within
alliance contest, our use of the standard Tullock contest success function
would imply that the payoff functions with and without alliance would co-
incide. Note that a uniform within alliance assignment of the prize strictly
increases the incentives to form an alliance.

Strategies

A choice for player i = 1, 2 in stage 1 is a mapping

ai : {1, v̄} → {yes, no} .

5This can be seen as an extreme interpretation of the payoff-structure in Skaperdas
(1998), where the prize is allocated to a member of the alliance according to the conduction
of a second contest within the winning alliance. We implicitly assume that the members
collusively choose ei = 0 in this second contest.
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A choice for player i = 1, 2, 3 in stage 2 is a mapping

ei : {yes, no}2 × {¬A,A} × {1, v̄} → R+ .

A strategy for player i = 1, 2 is a pair of mappings ai and ei.

Beliefs

Player i believes that another player j has a low valuation with probability
μj. μj depends on the other player’s choice aj in the first stage. Clearly the
beliefs of players one and two for player three equal the prior probability q
of having a low valuation. In a separating equilibrium the beliefs for players
one and two equal zero or one, in a pooling equilibrium these beliefs equal
the prior probabilities.

Denote by the vector ẽ the beliefs of the players over the 2nd-stage choices
of the other players given a ∈ {yes, no}2 × {¬A,A} and v ∈ {1, v̄}.

Equilibrium

The strategies {(a1, e1), (a2, e2), (e3)} and beliefs μ, ẽ are a Bayesian Nash
equilibrium, if

• the beliefs are formed using Bayes’ rule (if possible) given the strategies
and

• the strategies maximize expected payoffs given the beliefs.

In the following section we analyze equilibria with partial information rev-
elation (separating equilibria) and equilibria with no information revelation
(pooling equilibria).

3 Analysis

In this section we derive the necessary conditions for optimal behavior in the
second stage of the game given arbitrary beliefs. In the following sections
we successively solve for different scenarios of 1st-stage behavior in pure
strategies. These different scenarios allow us to restrict attention to cases in
which the beliefs μi assume values in {0, q, 1}.

If the alliance does not form, then each player i = 1, 2, 3 or if the alliance
does form, then only player i = 3 maximizes the following expected payoff
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function which depends on the beliefs μj(aj), μk(ak) and ẽj, ẽk for j, k ∈
{1, 2, 3}, j, k �= i, j �= k (where μj(aj) = q for j = 3):

μj(aj) · μk(ak) · ei
ei + ẽj(a, vj = 1) + ẽk(a, vk = 1)

· vi +

μj(aj) · (1− μk(ak)) · ei
ei + ẽj(a, vj = 1) + ẽk(a, vk = v̄)

· vi +

(1− μj(aj)) · μk(ak) · ei
ei + ẽj(a, vj = v̄) + ẽk(a, vk = 1)

· vi +

(1− μj(aj)) · (1− μk(ak)) · ei
ei + ẽj(a, vj = v̄) + ẽk(a, vk = v̄)

· vi − ei

The first order condition to this maximization problem is satisfied by the
optimal choice ei(a, vi) of player i:

μj(aj) · μk(ak) · ẽj(a,vj=1)+ẽk(a,vk=1)

(ei(a,vi)+ẽj(a,vj=1)+ẽk(a,vk=1))2
· vi +

μj(aj) · (1− μk(ak)) · ẽj(a,vj=1)+ẽk(a,vk=v̄)

(ei(a,vi)+ẽj(a,vj=1)+ẽk(a,vk=v̄))2
· vi +

(1− μj(aj)) · μk(ak) · ẽj(a,vj=v̄)+ẽk(a,vk=1)

(ei(a,vi)+ẽj(a,vj=v̄)+ẽk(a,vk=1))2
· vi +

(1− μj(aj)) · (1− μk(ak)) · ẽj(a,vj=v̄)+ẽk(a,vk=v̄)

(ei(a,vi)+ẽj(a,vj=v̄)+ẽk(a,vk=v̄))2
· vi ≤ 1 ,

(1)

where ei(a, vi) = 0 whenever the inequality is strict.

If there is an alliance, player i = 1, 2 maximizes (with j = 1, 2 j �= i):

μj(aj) · q · ei + ẽj(a, vj = 1)

ei + ẽj(a, vj = 1) + ẽ3(a, v3 = 1)
· vi
2

+

μj(aj) · (1− q) · ei + ẽj(a, vj = 1)

ei + ẽj(a, vj = 1) + ẽ3(a, v3 = v̄)
· vi
2

+

(1− μj(aj)) · q · ei + ẽj(a, vj = v̄)

ei + ẽj(a, vj = v̄) + ẽ3(a, v3 = 1)
· vi
2

+

(1− μj(aj)) · (1− q) · ei + ẽj(a, vj = v̄)

ei + ẽj(a, vj = v̄) + ẽ3(a, v3 = v̄)
· vi
2

− ei

The optimal choice ei(a, vi) for i = 1, 2 satisfies

μj(aj) · q · ẽ3(a,v3=1)

(ei(a,vi)+ẽj(a,vj=1)+ẽ3(a,v3=1))2
· vi

2
+

μj(aj) · (1− q) · ẽ3(a,v3=v̄)

(ei(a,vi)+ẽj(a,vj=1)+ẽ3(a,v3=v̄))2
· vi

2
+

(1− μj(aj)) · q · ẽ3(a,v3=1)

(ei(a,vi)+ẽj(a,vj=v̄)+ẽ3(a,v3=1))2
· vi

2
+

(1− μj(aj)) · (1− q) · ẽ3(a,v3=v̄)

(ei(a,vi)+ẽj(a,vj=v̄)+ẽ3(a,v3=v̄))2
· vi

2
≤ 1 ,

(2)
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where ei(a, vi) = 0 whenever the inequality is strict.

Note that all players face a strictly concave maximization problem. Therefore
any belief has a unique best response.

3.1 Separating Equilibrium

In a separating equilibrium the action ai of the first stage implies a belief
μi(ai) which is either equal to zero or equal to one for i = 1, 2. Hereby,
players one and two reveal their private information after the first stage. In
the second stage, all players know the valuations of players one and two and
whether there is an alliance between players one and two or not. There are
eight cases on which all players can condition their second stage choices:

case # 0 1 2 3 4 5 6 7
valuation of player 1 v1 1 1 1 1 v̄ v̄ v̄ v̄
valuation of player 2 v2 1 1 v̄ v̄ 1 1 v̄ v̄

formation of an alliance A ¬A A A ¬A A ¬A ¬A A

Note that cases 2 and 4 and also cases 3 and 5 are symmetric. Note further
that in symmetric pure strategy equilibria cases 0 and 1 and also cases 6 and
7 are mutually exclusive.

In each of the eight cases inequalities (1) and (2) simplify substantially and
we are able to derive each of the solutions in closed form as functions of the
parameters v̄ > 1 and q ∈ (0, 1). We present these solutions in appendix A.
Table 1 lists these solutions for the particular values v̄ = 2 and q = 1

2
.

Inequalities (1) and / or (2) imply polynomials of degree four (if binding).
The key to the solution is inequality (1) for player three. If (1) is binding for
i = 3, the solution satisfies (e1 + e2 + e3(v3))

2 = v3 · (e1 + e2), which can be
substituted in (1) or (2) for players one and two and simplifies the problem
substantially.

Note further for the cases in which an alliance forms, A = A, that the only
difference in inequality (2) for players one and two is the difference in the
valuations vi and vj. If v1 �= v2, inequality (2) must be strict for the player
with the lower valuation and that player chooses zero effort, irrespective of
the magnitude of the difference in v1 and v2. A tiny heterogeneity suffices
that one player rides on the back of the other.
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(v1, v2) A e1 e2 e3(v3 = 1) e3(v3 = 2) u1 u2

(1,1) ¬A 0.1927 0.1927 0.2354 0.4925 0.0723 0.0723
(1,1) A 0.0482 0.0482 0.2140 0.3426 0.0843 0.0843
(1,2) A 0 0.2379 0.2498 0.4519 0.2082 0.1784
(1,2) ¬A 0.0959 0.4797 0.1831 0.4973 0.0120 0.5996
(2,1) A 0.2379 0 0.2498 0.4519 0.1784 0.2082
(2,1) ¬A 0.4797 0.0959 0.1831 0.4973 0.5996 0.0120
(2,2) ¬A 0.4758 0.4758 0.0239 0.4280 0.3568 0.3568
(2,2) A 0.1189 0.1189 0.2498 0.4519 0.2974 0.2974

Table 1: solutions of inequalities (1) and / or (2) for parameter values v̄ = 2
and q = 1

2
.

In all cases but the two cases in which v1 = v2 and A = A, the solutions
are unique. In the two remaining cases, table 1 lists the unique symmetric
solutions. We argue why we can focus on the symmetric solutions without
loss of generality in subsection (3.2).

Before we continue the analysis, suppose for a moment that players one
and two mutually know their valuations at the beginning of the game. Then
in any case player i = 1, 2 prefers to form an alliance with the other player
if and only if vi = 1. This observation is true for general parameter values
v̄ > 1 and q ∈ (0, 1). In subsections 3.2 and 3.3 we study whether this
observation carries over to the case of incomplete information.

3.2 Only The Strong Stand Alone

In this subsection we analyze the following first stage-choices for players one
and two:

âi(vi) =

{
yes if vi = 1

no if vi = v̄
, i = 1, 2

Given these choices all players learn the valuations v1 and v2 after stage 1
(and mutually know this). Therefore, μi(yes) = 1 and μi(no) = 0 for i = 1, 2.

Note that cases 0 and 7 cannot emerge. If an alliance requires consent
(γ = 0), cases 2 and 4 cease to exist while if an alliance can be enforced
by one player (γ = 1), cases 3 and 5 cease to exist.

In case v1 = 1, v2 = 1, â = (yes, yes, A) there is a continuum of mu-
tually optimal choices. All efforts of players one and two that sum up to
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v̄ ·
(

1+q·(√v̄−1)
1+2·v̄+q·(v̄−1)

)2

are mutually optimal.6 Clearly, player one prefers those

pairs of mutually optimal efforts, which imply a lower effort for player one. If
players one and two exert asymmetric efforts, the outcome is less attractive
to the player with the higher effort who then might have stronger incentives
to deviate from the decision in the first stage. If we can show that symmetric
effort choices in the second stage imply a deviation in the first stage, then
asymmetric effort choices would all the more imply a deviation in the first
stage. By no means we suggest that the symmetric case is most plausible.
Consider the best pair of mutually optimal choices for player one in which
he chooses e1 = 0 and completely free rides on the effort of player two who

bears the whole burden and chooses e2 = v̄ ·
(

1+q·(√v̄−1)
1+2·v̄+q·(v̄−1)

)2

. Consider now

the situation v1 = 1, v2 = v̄ and â = (yes, no, A). Here, players one and
two form an alliance (against the will of player two) and again player one
completely free rides on the effort choice of player two with e1 = 0 and

e2 = v̄ ·
(

1+q·(√v̄−1)
3+q·(v̄−1)

)2

. Observe that if v̄ approaches 1, the mutually optimal

effort choices approach the most preferred ones for player one in the situation
v1 = 1, v2 = 1, â = (yes, yes, A).

While table 1 includes the mutually optimal effort choices and utilities along
the potential equilibrium path, we need to derive the optimal effort choices
and utilities after a unilateral and unexpected deviation.

3.2.1 Optimal Effort Choices After A Unilateral Deviation

We turn now to optimal choices of player one in stage 2 after a deviation of
player one to ã1(v1 = 1) = no or ã1(v1 = v̄) = yes in stage 1. In this case
players two and three believe that players one and two use the strategy â1
and â2. Therefore, the actual choice e1 does not equal player three’s belief
ẽ1 and therefore inequality (1) cannot be used to simplify the optimization
problem as before. While it is straight forward to show that player one’s max-
imization problem is strictly concave and therefore has a unique maximizer,
we cannot provide a solution in closed form. Instead, we derive the solutions
numerically. For this reason we focus on the specification q = 1

2
and v̄ = 2.

The reader can reproduce these derivations by using the supplementary files,
which also allow for general parameter values. The derivation is illustrated
in appendix B. In section 3.2.3 we argue that these results hold for a general
range of the parameter v̄.

6See appendix A for all details.
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Table 2 lists the utilities of player one derived from optimal choices of player
one after a deviation from â1 to ã1 given that players two and three behave
in the belief that player one uses â1 instead of ã1.

(v1, v2) (ã1, â2,A) u1(ê1, e−1|v1)
(1, 1) (no, yes, A) 0.0183
(1, 1) (no, yes,¬A) 0.1357
(1, 2) (no, no,¬A) 0.0366
(2, 1) (yes, yes, A) 0.2786
(2, 2) (yes, no, A) 0.4163
(2, 2) (yes, no,¬A) 0.2698

Table 2: utilities of player one for optimal deviations

3.2.2 Alliance Formation in Stage 1

The following game tree summarizes the findings for the case in which player
two uses â2 and in which players two and three believe that player one uses
â1:

v1 = 1 :
v1 = 2 :

0.0843
0.2786

0.0183
0.1784

0.1357
0.5996

0.2082
0.4163

0.0120
0.2698

0.0366
0.3568

0
A

[γ]

¬A
[1− γ]

0
A

[γ]

¬A
[1− γ]

yes

A

no

¬A
no yes

1
yes no

2 v2 = 1 0 v2 = 2 2

Figure 1: Reduced game tree from the perspective of player 1. The num-
bers are the expected utilities of player 1. Bold numbers indicate analytical
derivations.

In stage 1 player one does not know v2 and whether or not a unilateral
offer suffices for an alliance. Figure 2 illustrates player one’s expected utility
derived from â1 and ã1 using the priors q = 1

2
and γ ∈ (0, 1).
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ui(ai|vi)

γ0 1

ãi(vi = 1) = no

âi(vi = 1) = yes

γ = 0.2423

âi(vi = 2) = no

ãi(vi = 2) = yes

γ̄ = 0.71891
2

Figure 2: Expected utilities of player i in stage 1

We may conclude that player i = 1, 2 with vi = 1 does not have an incentive
to deviate to ãi(vi = 1) = no, if γ > γ = 0.2423 and that player i = 1, 2
with vi = 2 does not have an incentive to deviate to ãi(vi = 2) = yes, if
γ < γ̄ = 0.7189.

Proposition 1 (Separating Equilibrium) For v̄ = 2 and q = 1
2
, there is

an open set (γ, γ̄) ⊂ (0, 1) with 1
2
∈ (γ, γ̄) such that the choice to offer an

alliance if and only if vi = 1 is part of a strategy of a separating equilibrium
if and only if γ ∈ (γ, γ̄). More precisely:

âi(vi) =

{
yes if vi = 1

no if vi = 2
is part of a separating equilibrium

⇔
γ ∈ (γ, γ̄) ≈ (0.2423, 0.7189).

Appendices A and B summarize the optimal choices in the second stage.

In this section we derive optimal behavior for the parameter specification
v̄ = 2 and q = 1

2
. We derive equilibrium choices as closed form solutions in the

parameters v̄, q and γ. We derive the choices in the second stage that follow
deviation choices in the first stage numerically. The reader can verify these
numerical results using very simple means at any precision that is desirable.
We present the results with a four digit precision. The next subsection applies
this methodology for a broader specification of the parameter v̄.
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3.2.3 Optimal Alliance Formation for v̄ ∈ [1, 3]

By repeating the procedure for any v̄ ∈ (1, 3] (holding q = 1
2
fixed) we can

illustrate the dependence of γ̄ and γ, the upper and lower bound for γ on v̄
in figure 3:7

γ

v̄
1 2 3

1

1
2

1.3908
0

γ

γ̄

2.101

Figure 3: For each parameter v̄ ∈ [1, 3] (holding q = 1
2
fixed) the two lines

depict the lower and upper bound of the interval (γ, γ̄) for which the choice
ai = yes ⇔ vi = 1 is part of a separating equilibrium.

Figure 3 reveals that γ, γ̄ −→
v̄→1

0 and that γ > 0 for all v̄ ∈ (1, 3], which results

in the following observations: If γ = 1
2
(as in Herbst, Konrad, and Morath

(2015)), the choice âi can be supported as part of an equilibrium strategy if
and only if the unobservable high valuation is large enough (v̄ ≥ 1.3908). If
there is only little heterogeneity (v̄ is close to 1), the range for admissable
values for γ collapses to a tiny interval close to zero with the interpretation
that an alliance forms only if both players agree to form an alliance.

We compare these results to Skaperdas (1998) in section 4.

3.3 Only The Weak Stand Alone

In this subsection we analyze the consequences of the choice

ãi(vi) =

{
no , if vi = 1

yes , if vi = v̄

7There is a kink at v̄ = 2.101, because in case #6 player three chooses e3(v3 = 1) = 0
for all v̄ ≥ 2.101.
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in stage 1. We show that this choice in the first stage of the game cannot
be a part of a separating equilibrium. As in subsection 3.2, players one and
two reveal their valuations after stage 1 such that we can conduct backwards
induction. The beliefs collapse to μi(ai = yes) = 0 and μi(ai = no) = 1 for
i = 1, 2. Appendix A lists the mutually optimal effort choices and utilities.
We then assume that player one unilaterally deviates in stage 1 and derive
player one’s best responses to the choices of players two and three who believe
that player one chooses according to ã1 in stage 1. For the same reasons as
in section 3.2 we have to derive these best responses numerically for specific
values of the parameters v̄ and q. Finally, we show that for each γ ∈ [0, 1]
there is a type vi ∈ {1, 2} such that player i = 1, 2 has an incentive to deviate
from the strategy ãi. We argue that this result generalizes to any v̄ ∈ (1, 3].

3.3.1 Optimal Effort Choices After A Unilateral Deviation

We turn now to optimal choices of player one after a unilateral deviation of
player one from ã1 to â1, where players two and three choose their efforts in
the belief that player one follows ã1. As in section 3.2 we need to rely on
numerical methods to derive the best responses of player one and for this
reason we need to specify the values of the parameters v̄ = 2 and q = 1

2
.

We list the maximal utilities for player one in table 3. The reader can verify
these numbers by using the information provided in appendix C or using
these supplementary files.

(v1, v2) (â1, ã2,A) u1(ê1, e−1|v1)
(1,1) (yes, no, A) 0.0183
(1,1) (yes, no,¬A) 0.1357
(1,2) (yes, yes, A) 0.1327
(2,1) (no, no,¬A) 0.4607
(2,2) (no, yes, A) 0.4163
(2,2) (no, yes,¬A) 0.2698

Table 3: utilities of player one for optimal deviations

3.3.2 Alliance Formation in Stage 1 for v̄ = 2 and q = 1
2

The following game tree summarizes the findings for the case in which player
two chooses according to ã2 and players two and three believe that player
one also chooses according to ã1.
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v1 = 1 :
v1 = 2 :

0.0723
0.4607

0.0183
0.1784

0.1357
0.5996

0.2082
0.4163

0.0120
0.2698

0.1327
0.2974

0
A

[γ]

¬A
[1− γ]

0
A

[γ]

¬A
[1− γ]

no

¬A
yes

A

yes no

1
no yes

2 v2 = 1 0 v2 = 2 2

Figure 4: Reduced game tree from the perspective of player 1. The num-
bers are the expected utilities of player 1. Bold numbers indicate analytical
derivations.

Figure 5 depicts the utility of player one with v1 given that player two chooses
the equilibrium candidate strategy ã2 and believes that player one also does
so.

u1(a1|v1)

γ

ã1(v1 = 1) = no
a1(v1 = 1) = yes

γ = 0.5874

a1(v1 = 2) = no

ã1(v1 = 2) = yes

γ̄ = 0.29330 1

Figure 5: expected utilities of player one in stage 1

A player with vi = 1 has an incentive to deviate from the equilibrium can-
didate strategy in the first stage, if γ < γ and a player with vi = 2 has
an incentive to deviate from the equilibrium candidate strategy in the first
stage, if γ > γ̄. As γ̄ < γ, the candidate strategy ãi of this section is not an
equilibrium strategy. Proposition 2 summarizes this result:
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Proposition 2 For any γ ∈ [0, 1], there is a type vi ∈ {1, 2} such that player
i with type vi has an incentive to deviate from the equilibrium candidate

choice in stage 1. The strategy ãi(vi) =

{
no if vi = 1

yes if vi = 2
is not part of an

equilibrium strategy.

3.3.3 Optimal Alliance Formation for v̄ ∈ (1, 3]

The result of the previous subsection – that ãi is not a part of an equilibrium
strategy for v̄ = 2 – generalizes to the parameter range v̄ ∈ (1, 3]. All the
calculations done for the case v̄ = 2 and q = 1

2
are repeated for each v̄ ∈ (1, 3].

Figure 6 summarizes the dependence of the lower bound γ and upper bound
γ̄ for a potential interval of probabilities γ such that the choice ãi would
be an equilibrium choice. As there is no v̄ such that γ < γ̄, the respective
interval [γ, γ̄] is empty for all v̄ ∈ (1, 3].

γ

v̄
1 2 3

1

0

γ̄

γ

Figure 6: for any parameter value v̄ > 1 the interval [γ, γ̄] is empty.

3.4 All Stand Alone

In this section we derive a pooling equilibrium in which players one and two
reject to form an alliance – regardless of their respective valuation. In this
section we allow for any probability q ∈ (0, 1) for having a valuation vi = 1
and for any high valuation v̄ ≥ 1.

Suppose agents choose ai(vi) = no for vi ∈ {1, v̄} and i = 1, 2 in the first
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stage of the game. Then there is no agent who receives new information
about the valuations of the other players after stage 1 to update the beliefs
along the unique game path that receives positive probability. Along this
path there is no alliance in stage 2. In the second stage the choices of players
i = 1, 2, 3 satisfy inequality (1) with μi(no) = q, i = 1, . . . , 3. We may exploit
symmetry such that ei(v) =: e(v) for i = 1, 2, 3 and v ∈ {1, v̄}, which reduces
the first order conditions to:

q2 · 1

9 · e(1) +q ·(1−q) · e(1) + e(v̄)

(2 · e(1) + e(v̄))2
+(1−q)2 · e(v̄)

(e(1) + 2 · e(v̄))2 ≤ 1

2
(3)

q2 · e(1)

(e(v̄) + 2e(1))2
+ q · (1− q) · e(1) + e(v̄)

(e(1) + 2e(v̄))2
+(1− q)2 · 1

9e(v̄)
≤ 1

2v̄
, (4)

where inequality (3) is strict, if e(1) = 0 and (4) is strict, if e(v̄) = 0.

Proposition 3 For each q ∈ (0, 1) and v̄ > 1 there exist positive e∗(1) and
e∗(v̄) that satisfy inequalities (3) and (4).

We prove the proposition in appendix D. The proof makes use of the implicit
function theorem and Brouwer’s fixed point theorem.

Figure 7 depicts combinations of e(1) and e(v̄) such that conditions (3) and
(4) are satisfied for parameter values q = 1

2
and v̄ = 2.

e(1)

e(v̄)

(3)

(4)

0.4769

0.1701

Figure 7: Condition (3) is satisfied along the curve going from west to east
and condition (4) is satisfied along the curve going from south to north. Here,
q = 1

2
and v̄ = 2.
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While we cannot obtain a solution e∗(1|q, v̄), e∗(v̄|q, v̄) in explicit form, we
can solve conditions (3) and (4) for particular values of q and v̄ numerically.
For example, if q = 1

2
and v̄ = 2 we have

e∗1(1) = e∗2(1) = e∗3(1) ≈ 0.1701 and e∗1(2) = e∗2(2) = e∗3(2) ≈ 0.4769 .

Given these strategies, expected utilities are

Eui[e
∗
1(v1), e

∗
2(v2), e

∗
3(v3)|vi] ≈

{
0.0554 if vi = 1

0.4066 if vi = 2 .

Fortunately we do not need to know the explicit solution of equations (3)
and (4) to prove the existence of a pooling equilibrium. The line of proof is
as follows: any player can assure a payoff of zero by choosing e(vi) = 0. As
the utility functions are strictly concave any mutually optimal positive effort
choices must induce a positive payoff. We specifiy (extremely pessimistic)
beliefs for the off-equilibrium paths induced by at least one offer to form an
alliance in stage 1 such that the maximal (believed) payoff a player can hope
for is equal to zero. Given these beliefs, a deviation in the first stage is not
profitable.

Proposition 4 For each q ∈ (0, 1) and v̄ ≥ 1 there exists a Bayesian Nash
equilibrium in which all players reject to form an alliance.

Proof : Denote the payoffs given the solutions e∗(1) and e∗(v̄) for general
parameters q ∈ (0, 1) and v̄ > 1 by u∗(1) and u∗(v̄). Clearly, u∗(1), u∗(v̄) > 0.
Consider now a deviation of player j ∈ {1, 2} to âj = yes. Given that ai = no
for i = 1, 2, i �= j, this deviation may or may not enforce an alliance between
players one and two. If aj = no is part of the equilibrium, then Bayes’ rule
does not apply in the information set with âj = yes and any beliefs ẽ can be
used as equilibrium beliefs. Assume that if the deviation does not enforce an
alliance, then player j believes that the other players choose ẽk(1) = e∗k(1)
and ẽk(v̄) = e∗k(v̄) for k = 1, 2, 3 k �= j just as there were no deviation. As-
sume that if the deviation enforces an alliance, then the deviating player j
believes that player i chooses ẽi = 0 and that player three chooses ẽ3 = v̄.
Player i’s belief for player j’s behavior can be arbitrary. Given these beliefs,
it is optimal for player j to choose ej(1) = e∗j(1) and ej(v̄) = e∗j(v̄) if the
alliance does not form, implying the payoffs u∗(1) and u∗(v̄). If the alliance
does form (which would happen with probability γ ∈ [0, 1]) it is optimal for
player j to choose êj(1) = êj(v̄) = 0, which implies utility zero. Therefore,
given these beliefs it does not pay to deviate from the equilibrium strategy
which demands that ai(vi) = no for i = 1, 2 and vi ∈ {1, v̄}. �
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The pooling equilibrium which we have just proven to exist might seem un-
satisfactory because its construction relies on maximally pessimistic beliefs.
The next propostion states that any beliefs that support the choices (no, no)
in equilibrium induce the same behavior in the second stage along the equi-
librium path.

Theorem 1 For each q ∈ (0, 1) and v̄ > 1 the choices in stage 2 along
the equilbrium path are unique for any Bayesian Nash equilibrium in which
all players reject to form an alliance in stage 1.

Appendix D proves this statement. The main argument of the proof is that
the best respond curve for vi = 1 must hit the best respond curve for vi = v̄
from the same side in any fixed point. If there were several fixed points, this
would not be possible.

3.5 All Stand Together

In this section we analyze the first-stage choices ai(vi) ≡ yes for i = 1, 2
and vi = 1, v̄. As in section 3.4 players cannot update their beliefs after
stage 1 and μi = q for i = 1, 2, 3. We know from section 3.2 that there
may by multiple effort choices which are mutually optimal, if players one
and two form an alliance in stage 1. Therefore, in contrast to section 3.4
we do not have unique equilibrium choices in stage 2 and we can only prove
existence of an equilibrium. In the following we show that there exists a
symmetric equilibrium. For the choices of players one and two symmetry
implies e1(v) = e2(v) =: e(v) , v ∈ {1, v̄}. e(1) and e(v̄) satisfy (2) which
simplifies to

q2 · e3(1)

(2e(1)+e3(1))
2 + q · (1− q) · e3(v̄)

(2e(1)+e3(v̄))
2 +

(1− q) · q · e3(1)

(e(1)+e(v̄)+e3(1))
2 + (1− q)2 · e3(v̄)

(e(1)+e(v̄)+e3(v̄))
2 ≤ 2

(5)

and

q2 · e3(1)

(e(v̄)+e(1)+e3(1))
2 + q · (1− q) · e3(v̄)

(e(v̄)+e(1)+e3(v̄))
2 +

(1− q) · q · e3(1)

(2e(v̄)+e3(1))
2 + (1− q)2 · e3(v̄)

(2e(v̄)+e3(v̄))
2 ≤ 2

v̄
,

(6)

where e(1) = 0, if (5) is strict and e(v̄) = 0, if (6) is strict.
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The choices of player three satisfy (1) which simplify to

q2 · e(1)

(e3(1)+2e(1))2
+ q · (1− q) · e(1)+e(v̄)

(e3(1)+e(1)+e(v̄))2

+ (1− q)2 · e(v̄)

(e3(1)+2e(v̄))2
≤ 1

2

(7)

and
q2 · e(1)

(e3(v̄)+2e(1))2
+ q · (1− q) · e(1)+e(v̄)

(e3(v̄)+e(1)+e(v̄))2

+ (1− q)2 · e(v̄)

(e3(v̄)+2e(v̄))2
≤ 1

2·v̄ ,

(8)

where e3(1) = 0, if inequality (7) is strict and e3(v̄) = 0, if inequality (8) is
strict.

If q = 1
2
, we can derive a symmetric equilibrium numerically with positive

effort choices for each v̄ ≥ 1. Figure 8 illustrates the effort choices along the
equilibrium path.

ln(1) ln(5) ln(50)

e3(v̄)

e(v̄)

ln(v̄)

e3(1)

e(1)

1
4
· 1
18

1
4
· 2
9

1
18

2
9

e(1)

e(v̄)
e3(1)

e3(v̄)

Figure 8: Symmetric equilibrium effort choices e(v) of players one and two
and e3(v) of player three for the valuations v ∈ {1, v̄}. The right vertical axis
for v = 1 has a ten-fold scale of the left vertical axis for v = v̄.

In appendix E we argue that for any q and v̄ ≥ 1 at least three inequalities
must be binding in any symmetric equilibrium and that the choices for a
given high valuation v̄ tend to infinity as v̄ → ∞. Hereby it is straight
forward to see that if (7) is binding for large enough v̄, then (5) must be
strict, if q is close enough to zero. Therefore in contrast to section 3.4 we
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cannot simply treat conditions (5) to (8) as a system of equations. Robinson
(1991) provides an instruction of how the implicit function theorem can be
applied, if the underlying function is ‘nonsmooth’. We extract the essential
step for our special setting of his general analysis in lemma 1.8 For this
purpose we need to define the projection of some vector u ∈ R

4 on the
non-negative reals: u+ = (max{u1, 0}, . . . ,max{u4, 0}). Suppose there is
a function F (u, y) that represents four inequalities for four choices y ∈ R

4

and the optimal reactions u ∈ R
4 to y. Lemma 1 states that any root of

the auxiliar function F (u+, y) + u+ − u implys a solution to the inequalities
represented by F (·, ·). This is the key argument which allows us to use the
implicit function theorem as in the proof of lemma 3 in appendix D.

Lemma 1 If for a given function F : R4 ×R
4
+ → R

4 and y ∈ R
4
+ the vector

u ∈ R
4 solves

F (u+, y) + u+ − u = 0 ,

then −F (u+, y) ∈ R
4
+ with Fi(u

+, y) < 0 ⇒ u+
i = 0.

Proof : Suppose Fi(u
+, y) > 0 for some i = 1, . . . , 4. Then ui > u+

i ,
a contradiction. Hence −F (u+, y) ∈ R

4
+. Suppose Fi(u

+, y) < 0 for some
i = 1, . . . , 4. Then ui < u+

i , which implies u+
i = 0. �

Proposition 5 states that there exist symmetric effort choices which are mu-
tually optimal given that players one and two of any type v ∈ {1, v̄} form
an alliance in stage 1. As in the case of the separating equilibrium ‘only
the strong stand alone’ in which players one with a low valuation form an
alliance, there are also asymmetric effort choices in stage two which are mu-
tually optimal. Therefore, the equilibrium which we derive in this section is
not unique.

Proposition 5

i There exists a vector e∗ = (e∗(1), e∗3(1), e
∗(v̄), e∗3(v̄)) ∈ R

4
+ wich satisfies

inequalities (5) to (8).

Any such vector satisfies

ii e∗(1) + e∗3(1) > 0, e∗(1) ≤ e∗(v̄), e∗3(1) ≤ e∗3(v̄), e∗(v̄), e∗3(v̄) > 0 and

iii limv̄→∞ e∗(1) = q2 · 1
18
, limv̄→∞ e∗3(1) = q2 · 2

9
and e∗(v̄), e∗3(v̄) −→

v̄→∞
∞ and

8Lemma 1 provides a formalization of one direction of the respective verbal statement
in Robinson (1991): ‘...then solving (4.2) is equivalent to finding a solution of (4.5)...’,
p.304 within our special framework.
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iv limv̄→1 e
∗(1), e∗(v̄) = 1

18
, limv̄→∞ e∗3(1), e

∗
3(v̄) =

2
9
.

The proof in appendix E firstly proves α-versions of statements i to ii for
some small but positive α and then uses α− ii to show that i is also satisfied
for α = 0. Statements iii and iv follow directly.

Any strictly positive equilibrium effort choice induces a positive equilibrium
payoff, because the utility function is concave in the own effort-level.

Given that there exist mutually optimal effort choices in stage 2 after all
types of player one and two choose yes in stage 1 we need to construct beliefs
that support these choices in stage 1. As in the equilibrium ‘all stand alone’,
the following (extremely pessimistic) beliefs induce zero payoffs off the equi-
librium path: if at least one player chooses no in stage 1, players one and two
believe that player three chooses e3 = v̄. The best responses of players one
and two to this belief is to choose ei = 0 in stage 2, i = 1, 2, which results in
a payoff of zero.

Corollary 1 There exists a pooling equilibrium in which players one and two
choose yes in stage 1.

4 A Comparison to Skaperdas (1998)

The model at hand differs to the model of Skaperdas (1998) with respect to
the following aspects:

1. We use the standard Tullock contest success function [CSF] whereas
Skaperdas (1998) allows for more general functions.

2. Skaperdas (1998) allows only for voluntary alliance formation whereas
we allow for a probabilistic unilateral enforcement of an alliance which
we capture by the parameter γ ∈ [0, 1].

3. In Skaperdas (1998) the members of the winning alliance need to con-
duct a second contest to allocate the good whereas the paper at hand
implicitly assumes that the members of the winning alliance perfectly
collude in this second contest and allocate the good randomly.

4. In the paper at hand the valuations of the opponents are unknown to
all players whereas Skaperdas (1998) assumes complete information.

Firstly we may compare our results only to those results of Skaperdas (1998)
which apply for the standard Tullock CSF and secondly which are valid for
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γ = 0. Thirdly we need to be aware that our model is much more in favor
towards the formation of alliances than the model of Skaperdas (1998). With
4. we are able to identify the implication of incomplete information in the
model of alliance formation.

According to Proposition 1 of Skaperdas (1998) there exist two players who
voluntary form an alliance in the case of the standard Tullock CSF. In Propo-
sition 2, Skaperdas (1998) provides sufficient conditions on the CSF for the
identification of the types who voluntary form an alliance. The standard
Tullock CSF does not satisfy these sufficient conditions; in this trivial case
any type combination would voluntarily form an alliance under complete in-
formation and with a competitive secondary contest. In our model with a
collusive secondary contest, incomplete information, γ = 0 and the standard
Tullock CSF Proposition 1 is still valid: there exist two players who volun-
tarily form an alliance. In contrast to Proposition 2, the alliance is formed by
any combination of types. In particular we argue that there is no voluntary
alliance formation with type revelation, where only the weak players or only
the strong players form an alliance. The unique voluntary alliance is the one
in which players prefer to form an alliance regardless of their respective type,
which can only be support by extremely pessimistic beliefs.

5 Conclusions

In this paper we analyze a three player game with two stages in which firstly
two of the three players may opt to form an alliance and secondly all players
compete in a standard Tullock (1980) contest. This model is motivated by
the experiments described in Herbst, Konrad, and Morath (2015). Here,
we analyze a variant in which all players have private valuations for the
prize. In the experiments alliances can be enforced by a single player with
probability 1

2
, or in my variant with some probability γ ∈ [0, 1]. We focus on

a situation in which players use the first-stage-decision of group formation
as an informative signal on the unobservable valuations. In particular we
characterize a separating equilibrium in which players with a low valuation
offer to form an alliance, players with a high valuation reject to form an
alliance, update their beliefs accordingly and choose optimal levels of effort-
provision in the second stage. We show that this equilibrium exists only if the
parameter γ is close enough to 1

2
. If γ = 0, any first stage equilibrium decision

is uninformative regarding the types of the players. We show that a strategy
in which only high types form an alliance is not part of any equilibrium for
any parameter values. We proove existence of the two pooling equilibria in
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which either all types form an alliance or reject to form an alliance. We show
that all equilibria in which no player-type prefers to form an alliance induce
the same choices along the equilibrium path.

Appendices

A Optimal Efforts For Known (v1, v2), And A
We present the optimal choices e1(v1, v2,A), e2(v1, v2,A) and e3(v1, v2, v3,A)
that satisfy conditions (1) and / or (2) and the corresponding utilities of
players one and two.

Define the following constants:

C1 = v̄ ·
(

1 + q · (√v̄ − 1)

1 + 2 · v̄ + q · (v̄ − 1)

)2

C2 = v̄ ·
(
1 + q · (√v̄ − 1)

3 + q · (v̄ − 1)

)2

C3 = 2 · v̄ ·
(

1 + q(
√
v̄ − 1)

2 + v̄ + q · (v̄ − 1)

)2

C̃3 = v̄ ·
(
1 + q · (√v̄ − 1)

2 + q · (v̄ − 1)

)2

A.0 (v1, v2) = (1, 1) A = ¬A
Condition (1) is uniquely satisfied by

e1 = e2 = 2 · C1

e3(v3 = 1) = 2 · C1 · v̄ + (1− q) · (√v̄ − 1)2

1 + q(
√
v̄ − 1)

· 1√
v̄

e3(v3 = v̄) = 2 · C1 · 2 · v̄ − 1 + q · (√v̄ − 1)2

1 + q · (√v̄ − 1)

u1 = u2 = C1 · 1 + q · (v̄ − 1)

v̄
, i = 1, 2 ,
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A.1 (v1, v2) = (1, 1) , A = A

Conditions (1) and (2) are satisfied by all e1, e2 ≥ 0 such that

e1 + e2 = C1

e3(v3 = 1) = C1 · 2 · v̄ − (1− q) · (√v̄ − 1)√
v̄ · (1 + q · (√v̄ − 1))

e3(v3 = v̄) = C1 · 2 · v̄ + q · √v̄ · (√v̄ − 1)

1 + q · (√v̄ − 1)

u1, u2 ∈
[
C1 · 1 + q · (v̄ − 1)

2 · v̄ , C1 · 1 + 2 · v̄ + q · (v̄ − 1)

2 · v̄
]

max min
i∈{1,2}

ui(a, vi) = C1 · 1 + q · (v̄ − 1) + v̄

2 · v̄ , i = 1, 2 ,

A.2 (v1, v2) = (1, v̄) , A = A

The exact solutions to conditions (1) and (2) are given by

e1 = 0

e2 =

⎧⎨
⎩
C2 if v̄ <

(
3−q
1−q

)2

v̄ ·
(

1−q
3−q

)2

if v̄ ≥
(

3−q
1−q

)2

e3(v3 = 1) =

⎧⎨
⎩
C2 · 2−(1−q)·(√v̄−1)√

v̄·(1+q·(√v̄−1))
if v̄ <

(
3−q
1−q

)2

0 if v̄ ≥
(

3−q
1−q

)2

e3(v3 = v̄) =

⎧⎨
⎩
C2 · 2+q·√v̄·(√v̄−1)

1+q·(√v̄−1)
if v̄ <

(
3−q
1−q

)2

v̄ · 1−q
(3−q)2

· 2 if v̄ ≥
(

3−q
1−q

)2

u1 =

⎧⎨
⎩
C2 · 3+q·(v̄−1)

2·v̄ if v̄ <
(

3−q
1−q

)2

1
2
· 1+q
3−q

if v̄ ≥
(

3−q
1−q

)2

u2 =

⎧⎨
⎩
C2 · 1+q·(v̄−1)

2
if v̄ <

(
3−q
1−q

)2

v̄
2
· 1+6·q−3·q2

(3−q)2
if v̄ ≥

(
3−q
1−q

)2
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A.3 (v1, v2) = (1, v̄), A = ¬A
The exact solutions to condition (1) are given by

e1 =

{
C3 · 2−v̄+q·(v̄−1)

1+q·(v̄−1)
if v̄ < 2−q

1−q

0 if 2−q
1−q

≤ v̄

e2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C3 · v̄+q·(v̄−1)

1+q·(v̄−1)
if v̄ < 2−q

1−q

C̃3 if 2−q
1−q

≤ v̄ <
(

2−q
1−q

)2

(
1−q
2−q

)2

· v̄ if
(

2−q
1−q

)2

≤ v̄

e3(v3 = 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C3 · 1+(1−q)·(√v̄−1)2√

v̄·(1+q·(√v̄−1))
if v̄ < 2−q

1−q

C̃3 · 2−√
v̄+q·(√v̄−1)√

v̄·(1+q·(√v̄−1))
if 2−q

1−q
≤ v̄ <

(
2−q
1−q

)2

0 if
(

2−q
1−q

)2

≤ v̄

e3(v3 = v̄) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C3 · v̄+q·(√v̄−1)2

1+q·(√v̄−1)
if v̄ < 2−q

1−q

C̃3 · 1+q·√v̄·(√v̄−1)√
v̄·(1+q·(√v̄−1))

if 2−q
1−q

≤ v̄ <
(

2−q
1−q

)2

1−q
(2−q)2

· v̄ if
(

2−q
1−q

)2

≤ v̄

u1 =

{
C3 · (2−v̄+q·(v̄−1))2

2·v̄·(1+q·(v̄−1))
if v̄ < 2−q

1−q

0 if v̄ ≥ 2−q
1−q

u2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C3 · (v̄+q·(v̄−1))2

2·(1+q·(v̄−1))
if v̄ < 2−q

1−q

C̃3 · 2−v̄+q·(v̄−1)
v̄

if 2−q
1−q

≤ v̄ <
(

2−q
1−q

)2

q · v̄ + (1− q) ·
(

1−q
2−q

)2

· v̄ if
(

2−q
1−q

)2

≤ v̄

.

A.4 (v1, v2) = (v̄, 1), A = A

This case is symmetric to (v1, v2) = (1, v̄) , A = A in appendix A.2.

A.5 (v1, v2) = (v̄, 1), A = ¬A
This case is symmetric to (v1, v2) = (1, v̄), A = ¬A in appendix A.3.
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A.6 (v1, v2) = (v̄, v̄), A = ¬A
The exact solutions to condition (1) are given by

e1 = e2 =

⎧⎨
⎩
2 · C2 if v̄ <

(
q+

√
1+q−1
q

)2

1+
√

(1+q)3−3·q
(3−q)2

· v̄ · 1−q
1+q

+ q
1+q

· v̄
2

if v̄ ≥
(

q+
√
1+q−1
q

)2

e3(v3 = 1) =

⎧⎨
⎩
2 · C2 · v̄−(1+q)·(√v̄−1)2√

v̄·(1+q·(√v̄−1))
if v̄ <

(
q+

√
1+q−1
q

)2

0 if v̄ ≥
(

q+
√
1+q−1
q

)2

e3(v3 = v̄) =

⎧⎨
⎩
2 · C2 · 1+q·(√v̄−1)2

1+q·(√v̄−1)
if v̄ <

(
q+

√
1+q−1
q

)2

if v̄ ≥
(

q+
√
1+q−1
q

)2

u1 = u2 =

⎧⎨
⎩
C2 · (1 + q · (v̄ − 1)) if v̄ <

(
q+

√
1+q−1
q

)2

1+
√

(1+q)3−3·q
(3−q)2

· v̄ if v̄ ≥
(

q+
√
1+q−1
q

)2 .

A.7 (v1, v2) = (v̄, v̄), A = A

Conditions (1) and (2) are satisfied by all e1, e2 ≥ 0 such that

e1 + e2 =

⎧⎨
⎩
C2 if v̄ ≤

(
3−q
1−q

)2

v̄ ·
(

1−q
3−q

)2

if v̄ >
(

3−q
1−q

)2

e3(v3 = 1) =

⎧⎨
⎩
C2 · 2−(1−q)·(√v̄−1)√

v̄·(1+q·(√v̄−1))
if v̄ ≤

(
3−q
1−q

)2

0 if v̄ >
(

3−q
1−q

)2

e3(v3 = v̄) =

⎧⎨
⎩
C2 · 2+q·(√v̄−1)·√v̄

1+q·(√v̄−1)
if v̄ ≤

(
3−q
1−q

)2

v̄ ·
(

1−q
3−q

)2

· 2
1−q

if v̄ >
(

3−q
1−q

)2

u1, u2 ∈
⎧⎨
⎩
[
C2 · 1+q·(v̄−1)

2
, C2 · 3+q·(v̄−1)

2

]
if v̄ ≤

(
3−q
1−q

)2

[
v̄
2
· 1+6q−3q2

(3−q)2
, v̄
2
· 3+2q−q2

(3−q)2

]
if v̄ >

(
3−q
1−q

)2

and

min max{u1, u2} =

⎧⎨
⎩
C2 · 2+q·(v̄−1)

2
if v̄ ≤

(
3−q
1−q

)2

v̄ · 1+2q−q2

(3−q)2
if v̄ >

(
3−q
1−q

)2 .
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In this case, the optimal choices of players one and two are not determined
uniquely.

B Only The Strong Stand Alone – Optimal

Efforts After A Unilateral Deviation In Stage

1

We derive the optimal effort choices that follow a unilateral deviation from â1
to ã1 in stage 1 numerically and therefore need to assign specific numbers to
the parameters. We choose v̄ = 2 and q = 1

2
. Players two and three believe

that player one uses â1(v1 = 1) = yes and â1(v1 = 2) = no. Table 4 lists
the function values of the optimal effort choices of players two and three if
they believe to be in one of the six cases for the parameter values v̄ = 2 and
q = 1

2
. The corresponding functions are presented in appendix A.

case (v1, v2) (a1, a2,A) e2(a, v2) e3(a, v3 = 1) e3(a, v3 = 2)

#1: (1, 1) (yes, yes, A) 0.0482 0.2140 0.3426
#2: (1, 2) (yes, no, A) 0.2379 0.2498 0.4519
#3: (1, 2) (yes, no,¬A) 0.4797 0.1831 0.4973
#4: (2, 1) (no, yes, A) 0 0.2498 0.4519
#5: (2, 1) (no, yes,¬A) 0.0959 0.1831 0.4973
#6: (2, 2) (no, no,¬A) 0.4758 0.0239 0.4280

Table 4: optimal effort choices of players two and three who believe that
v1 = 1, if a1 = yes and v1 = v̄, if a1 = no for v̄ = 2 and q = 1

2
.

Figure 9 illustrates the best responses of player one to the choices of players
two and three who believe to be in the cases one to six.
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u1(ê1|v1)

0
ê1

0.0747

#4
0.0183

0.2226

#5
0.1357

0.1496

#6
0.0366

0.1978

#10.2786

0.4163
#2

0.4539

#3
0.2698

Figure 9: best responses of player one to the choices listed in table 4

C Only The Weak Stand Alone – Optimal Ef-

fort Choices After A Unilateral Deviation

In Stage 1

We derive the optimal effort choices that follow a unilateral deviation from â1
to ã1 in stage 1 numerically and therefore need to assign specific numbers to
the parameters. We choose v̄ = 2 and q = 1

2
. Players two and three believe

that player one uses â1(v1 = 1) = yes and â1(v1 = 2) = no. Table 4 lists
the function values of the optimal effort choices of players two and three if
they believe to be in one of the six cases for the parameter values v̄ = 2 and
q = 1

2
. The corresponding functions are presented in appendix A.
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case (v1, v2) (a1, a2,A) e2(a, v2) e3(a, v3 = 1) e3(a, v3 = 2)

#0: (1, 1) (no, no,¬A) 0.1927 0.2354 0.4925
#2: (1, 2) (no, yes, A) 0.2379 0.2498 0.4519
#3: (1, 2) (no, yes,¬A) 0.4797 0.1831 0.4973
#4: (2, 1) (yes, no, A) 0 0.2498 0.4519
#5: (2, 1) (yes, no,¬A) 0.0959 0.1831 0.4973
#7: (2, 2) (yes, yes, A) 0.1189 0.2498 0.4519

Table 5: optimal effort choices of players two and three who believe that
v1 = v̄, if a1 = yes and v1 = 1, if a1 = no for v̄ = 2 and q = 1

2
.

Figure 10 illustrates the best responses of player one to the choices of players
two and three who believe to be in the cases #0 to #7.

u1(ê1, e−1|v1)

ê1
0.4921

#0
0.4607

#2
0.4163

0.4593

#3
0.2698

0.0748

#4
0.0183

0.2226

#50.1357
0.1327

#7

0

Figure 10: best responses of player one to the choices listed in table 5
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D Proofs of section 3.4

Lemma 2 If e(1) and e(v̄) solve the inequalities (3) and (4), then e(1) and
e(v̄) are positive and the inequalities are binding.

Proof : The left hand side of (3) tends to ∞ for e(1) → 0 and the left
hand side of (4) tends to ∞ for e(v̄) → 0. Hence e(1), e(v̄) > 0 and both
inequalities must be binding. �

The existence of an equilibrium heavily relies on the existence of the inter-
section of the two curves defined by (3) and (4). The next lemma provides
an implicit definition of these curves.

Lemma 3 Conditions (3) and (4) imply a unique well defined continuously
differentiable function g : R2

++ → R
2
+ such that e(1) = g1(·, e3(1)) and e3(1) =

g2(e(1), ·).
Proof : Use (3) and (4) and lemma 2 to define the continuous function
f : R2

+ × R
2
++ → R

2 as

f(x1, x2, y1, y2) =

(
q2 1

9y1
+ q(1− q) y1+x2

(2y1+x2)2
+ (1− q)2 x2

(y1+2x2)2
− 1

2

q2 x1

(y2+2x1)2
+ q(1− q) x1+y2

(x1+2y2)2
+ (1− q)2 1

9y2
− 1

2v̄

)
.

For (a, b) ∈ R
2
+ × R

2
++ we have that

∂f1
∂x2

(a, b) = −q · (1− q) · a2
(2b1 + a2)3

− (1− q)2 · 2a2 − b1
(b1 + 2a2)3

∂f2
∂x1

(a, b) = q2 · b2 − 2a1
(b2 + 2a1)3

− q · (1− q) · a1
(a1 + 2b2)3

∂f1
∂y1

(a, b) = −q2
1

9b21
− q(1− q)

2b1 + 3a2
(2b1 + a2)3

− (1− q)2
a2

(b1 + 2a2)3

∂f2
∂y2

(a, b) = −q2
a1

(b2 + 2a1)3
− q(1− q)

3a1 + 2b2
(a1 + 2b2)3

− (1− q)2
1

9b22

and
∂f1
∂x1

(a, b) =
∂f2
∂x2

(a, b) =
∂f1
∂y2

(a, b) =
∂f2
∂y1

(a, b) = 0 .

Hence the Jacobian

∂f

∂y
(a, b) =

⎛
⎝

∂f1
∂y1

0

0 ∂f2
∂y2

⎞
⎠ (a, b)
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has strictly negative entries on the diagonal. Note that f(x, y) −→
y1,y2→∞(−1

2
,− 1

2·v̄
) ∀ x ∈ R

2
+. As fi(x, y) −→

yi→0
∞, i = 1, 2 and by continuity of

f(·, ·), we have that for each a ∈ R
2
+ there exists a unique b ∈ R

2
++ such that

f(a, b) = 0. Because the Jacobian of f is invertible for all (a, b) ∈ R
2
+×R

2
++,

the implicit function theorem9 implies that there exists a unique continuously
differentiable function g : R2

+ → R
2
+ such that{

(x, g(x))|x ∈ R
2
+

}
=

{
(x, y) ∈ R

2
+ × R

2
++|f(x, y) = 0

}
with

∂g(x)

∂x
= −

(
0 ∂f1

∂x2
/∂f1
∂y1

∂f2
∂x1

/∂f2
∂y2

0

)
(x, g(x)) .

�

Lemma 4 (Proposition 3) For each v̄ ≥ 1 and q ∈ (0, 1) there exists a
pair (e∗(1), e∗(v̄)) such that conditions (3) and (4) are satisfied.

Proof : For g : R2
+ → R

2
+ as defined in the proof of lemma 3 we have

g(0) = (2
9
q2+ 1

2
q(1−q), 2

9
(1−q)2v̄+ 1

2
q(1−q)v̄) and g(x) −→

x→∞
2
9
(q2, v̄(1−q)2).

By continuity, g : R+ → R+ is bounded by some (K,K) ∈ R
2. By Brouwer’s

fixed-point theorem there exists a point x∗ ∈ [0, K]2 with g(x∗) = x∗ for
K < ∞ large enough. Define e∗(1) = x∗

1 and e∗(v̄) = x∗
2. Note that lemmata

2, 3 or 4 are valid for any q ∈ (0, 1) and v̄ ≥ 1. �

Lemma 5 If e∗(1) and e∗(v̄) satisfy conditions (3) and (4), then e∗(v̄) >
e∗(1) for all v̄ > 1.

Proof : Consider some fixed point x of g(·) with x1 ≥ x2.

x1

(x1 + 2 · x1)2
≤ x1

(x2 + 2x1)2

x1 + x2

(x1 + x1 + x2)2
≤ x1 + x2

(x2 + x1 + x2)2

x2

(x1 + 2x2)2
≤ x2

(x2 + 2x2)2
.

9See Munkres (1994).
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As −1
2
< − 1

2v̄
∀ v̄ > 1, we have that f1(x, g(x)) < f2(x, g(x)), a contradiction

to the definition of g(·). Hence x1 < x2. �

Theorem 1 For each v̄ ≥ 1 and q ∈ (0, 1) there exists a unique pair
(e∗(1), e∗(v̄)) such that conditions (3) and (4) are satisfied.

Proof : We show that at any fixed point x∗ and in the direction of
increasing x2, the graph of g1(·) intersects the graph of g2(·) coming from
{(x1, x2) : x2 < g2(x)} which is the shaded area in figure 11.

x1, g1(x̄1, x2)

x2, g2(x1, x̄2)

g1(x̄1, x2)

g2(x1, x̄2)

45

Figure 11: At any fixed point the graph of g1(·) must hit the graph of g2(·)
from the direction of the shaded area.

If ∂g2
∂x1

(x, g(x)) = 0, this is trivially the case as g1(·) has finite first derivatives
at any point x. If ∂g2

∂x1
(x∗, g(x∗)) > 0, we need to show that ∂g1

∂x2
(x∗, g(x∗)) is

strictly lower than the inverse of the slope of g2(·) at x∗ and if ∂g2
∂x1

(x∗, g(x∗)) <
0 we need to show that the slope of ∂g1

∂x2
(x∗, g(x∗)) is strictly greater than the

inverse of the slope of g2(·) at x∗. This amounts to the condition

∂g1
∂x2

(x∗, g(x∗)) · ∂g2
∂x1

(x∗, g(x∗)) < 1 (9)
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at any fixed point x∗. If there were multiple fixed points, the graph of g1(·)
would have to interset g2(·) coming from the white area for at least one
fixed point, a contradiction. Lemma 3 states the partial derivatives of g(·)
and by lemma 5 we know that any fixed point satisfies x∗

2 > x∗
1 and hence

∂f1
∂x2

(x∗, g(x∗)) < 0 and ∂f2
∂y2

(x∗, g(x∗)) < 0. With these statements we can

show that condition (9) is equivalent to

det

(
∂f

∂x
,
∂f

∂y

)
= −∂f2

∂x1

· ∂f1
∂x2

+
∂f1
∂y1

· ∂f2
∂y2

> 0

for any fixed point x∗, where we use the g-determinant for 2× n matrices as
defined by Radić (2005). Elementary rearrangements imply

−∂f2
∂x1

· ∂f1
∂x2

+
∂f1
∂y1

· ∂f2
∂y2

=

q3(1− q)

(x2 + 2x1)6
· (x2

2 + 2x2
1 + x1x2

)
+

q(1− q)3

(x1 + 2x2)6
(
x1x2 + 2x2

2 + x2
1

)

+8
q2(1− q)2

(x2 + 2x1)3(x1 + 2x2)3
· (x2

2 + x2
1 + x1x2

)
+q4

1

9x2
1

x1

(x2 + 2x1)3
+ q3(1− q)

1

9x2
1

3x1 + 2x2

(x1 + 2x2)3
+ q2(1− q)2

1

9x2
1

1

9x2
2

+q(1− q)3 · 2x1 + 3x2

(2x1 + x2)3
1

9x2
2

+ (1− q)4
x2

(x1 + 2x2)3
1

9x2
2

> 0

�

E Proof of section 3.5

Proof of Proposition 5:
Use the binding conditions (5) to (8) to define the continuous function Fα :
R

4 × R
4
+ → R

4 as10

Fα(u1, u2, u3, u4, y1, y2, y3, y4) =

10Nti (1997) and Franke and Ozturk (2009) use a positive constant in the denominator
to handle discontinuity problems.
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⎛
⎜⎜⎜⎝

q2· y3+α

(2·u1+y3)
2+α2+q·(1−q)· y4+α

(2·u1+y4)
2+α2+(1−q)·q· y3+α

(u1+y2+y3)
2+α2+(1−q)2· y4+α

(u1+y2+y4)
2+α2−2

q2· y3+α

(u2+y1+y3)
2+α2+q·(1−q)· y4+α

(u2+y1+y4)
2+α2+(1−q)·q· y3+α

(2·u2+y3)
2+α2+(1−q)2· y4+α

(2·u2+y4)
2+α2− 2

v̄

q2· 2y1+α

(u3+2·y1)2+α2+q·(1−q)· 2(y1+y2)+α

(u3+y1+y2)
2+α2+(1−q)2· 2y2+α

(u3+2·y2)2+α2−1

q2· 2y1+α

(u4+2·y1)2+α2+q·(1−q) · 2(y1+y2)+α

(u4+y1+y2)
2+α2+(1−q)2· 2y2+α

(u4+2·y2)2+α2− 1
v̄

⎞
⎟⎟⎟⎠

and Gα : R4 × R
4
+ → R

4 with

Gα(u, y) = Fα(u
+, y) + u+ − u

for u ∈ R
4 and y ∈ R

4
+.

Consider any ŷ ∈ R
4.

Suppose Gαj(0, ŷ) > 0. As limuj→∞ Gαj(u, ŷ) ∈ (0,−∞) for each j and as
Gαj(u, ŷ) is continuous in uj, there exists some ûj such that Gαj(û, ŷ) = 0.
Suppose Gαj(0, ŷ) < 0. Then Gαj(0, ŷ) = Fαj(0, ŷ) < 0. Define û such that
ûj = Fαj(0, ŷ). Then Gαj(û, ŷ) = Fαj(0, ŷ)− Fαj(0, ŷ) = 0.
Therefore, for each ŷ ∈ R

4 there exist a ûα ∈ R
4 such that Gα(ûα, ŷ) = 0.

We consider now the matrix ∂+Gα

∂u
(u, y) ∈ R

4 × R
4 with

∂+Gαi

∂uj

= lim
h↘0

Gαi(u+ h · ej, y)−Gαi(u, y)

h
, i, j = 1, . . . , 4 .

For u ∈ R
4 with uj ≥ 0 we have

∂+Gαi

∂uj

=

{
∂Fαi

∂ui
if j = i

0 if j �= i
.

For u ∈ R
4 with uj < 0 we have

∂+Gαi

∂uj

=

{
1 if j = i

0 if j �= i
.

Note that in our special setup we can simplify the general analysis of Robin-
son (1991).

As ∂Fαi

∂ui
(u, y) < 0 for all (u, y) ∈ R

4 × R
4
+, the matrix ∂+Gα

∂u
(u, y) has full

rank for all (u, y) ∈ R
4 × R

4
+. By the implicit function theorem, for any

point (û, ŷ) ∈ R
4 × R

4
+ with Gα(û, ŷ) = 0 there is a neighborhood H of y0,

H ⊂ R
4
+ and a unique continuous function gα : H → R

4 such that gα(ŷ) = û
and Gα(gα(y), y) = 0 ∀ y ∈ H.
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As ∂Fαi

∂yj
(u, y) ≤ 0 for all i, j = 1, . . . , 4 there exists a finite K ∈ R+ such

that gα(y) ∈ [0, K]4 for all y ∈ R
4
+ and by Brouwer’s fixed point theorem

there exists some y∗α ∈ [0, K]4 such that y∗α = gα(y
∗
α).

For each fixed point y∗α we have that Fαi(gα(y
∗
α)

+, y∗α) ≤ 0 for i = 1, . . . , 4
and by lemma 1 Fαi(gα(y

∗
α)

+, y∗α) < 0 implies gα(y
∗
α)

+
i = 0. Therefore gα(y

∗
α)

+

satisfies statement i) of the lemma for α > 0.

For the following arguments consider some α > 0 and suppose there exists
some y∗α ∈ R

4
+ with Fα(y

∗
α, y

∗
α) ≤ 0 and Fαi(y

∗
α, y

∗
α) < 0 ⇒ y∗αi = 0.

Suppose y∗α1 = y∗α3 = 0. Then there exists some α > 0 such that
Fα1(gα(y

∗
α), y

∗
α) > 0 ∀ 0 < α < α, a contradiction. Hence y∗α1 + y∗α3 > 0.

Suppose y∗α1 > y∗α2 ≥ 0. Then Fα1(gα(y
∗
α), y

∗
α) < Fα2(gα(y

∗
α), y

∗
α) ≤ 0, a

contradiction to y∗α1 > 0. Hence y∗α1 ≤ y∗α2.
Suppose y∗α3 > y∗α4 ≥ 0. Then Fα3(gα(y

∗
α), y

∗
α) < Fα4(gα(y

∗
α), y

∗
α) ≤ 0, a

contradiction to y∗α3 > 0. Hence y∗α3 ≤ y∗α4.
Suppose y∗α2 = 0. Then y∗α1 = 0 and Fα3(gα(y

∗
α), y

∗
α) < 0 and hence

y∗α3 = 0, a contradiction to y∗α1 + y∗α3 > 0. Hence y∗α2 > 0.
Suppose y∗α4 = 0. Then y∗α3 = 0 and Fα1(gα(y

∗
α), y

∗
α) < 0 and hence

y∗α1 = 0, a contradiction to y∗α1 + y∗α3 > 0. Hence y∗α4 > 0.

Therefore y∗αi+y∗αj > 0 for any i, j = 1, . . . , 4, i �= j. As Fα(u, y) is continuous
in α at any (u, y) = (y∗α, y

∗
α) with y∗αi+ y∗αj > 0, i, j = 1, . . . , 4, i �= j, we have

that y∗α →
α→0

e∗ = (e∗(1), e∗3(1), e
∗(v̄), e∗3(v̄)), where e∗ satisfies statements i)

and ii) of the lemma.

Suppose lim
v̄→∞

e∗(v̄) < ∞. As 8
v̄
−→
v̄→∞

0 and as e∗(1) < e∗(v̄) we have that

e∗3(1) −→
v̄→∞

∞ such that (6) can be satisfied. But then the inequality in (7)

is strict and e∗3(1) = 0, a contradiction. Analogue arguments imply that
e∗3(v̄) −→

v̄→∞
∞. Therefore we have

(5) −→
v̄→∞

q2 · e3(1)

(2e(1) + e3(1))2
≤ 2

(7) −→
v̄→∞

q2 · 2e(1)

(2e(1) + e3(1))2
≤ 1

Observe that (5) is strict implies e(1) = 0 which implies (7) is strict which im-
plies e3(1) = 0 which implies that (7) is strict, hence e(1) −→

v̄→∞
0 ⇔ e3(1) −→

v̄→∞
0. Hence, if e(1) or e3(1) −→

v̄→∞
0 then e(1) + e3(1) −→

v̄→∞
0, a contradiction.

Hence lim
v̄→∞

e(1), e3(1) > 0 and the inequalities in (5) and (7) must be binding
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for v̄ → ∞. The unique solution to these two equations is e∗(1) = q2 · 1
18

and
e∗3(1) = q2 · 2

9
. This proves statement iii of the lemma.

lim
v̄→1

e(v̄) = lim
v̄→1

e(1) and lim
v̄→1

e3(v̄) = lim
v̄→1

e3(1) follows by symmetry. Con-

ditions (6) collapses to (5) which reduces to e3(1)
(2·e(1)+e3(1))2

≤ 2 and condition

(8) collapses to (7) which reduces to e(1)

(2·e(1)+e3(1))
2 ≤ 1

2
. As before we have

lim
v̄→1

e(v̄), e3(v̄) > 0 and both inequalities must be binding. The unique so-

lution to these two equations is e∗(1) = 1
18

and e∗3(1) = 2
9
. This proves

statement iv of the lemma. �
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