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Abstract

We characterize revenue maximizing head starts for all-pay auctions and lottery 
contests with many heterogeneous players. We show that under optimal head starts 
all-pay auctions revenue-dominate lottery contests for any degree of heterogeneity 
among players. Moreover, all-pay auctions with optimal head starts induce higher 
revenue than any multiplicatively biased all-pay auction or lottery contest. While head 
starts are more eff ective than multiplicative biases in all-pay auctions, they are less 
eff ective than multiplicative biases in lottery contests.
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1 Introduction

Competitive situations frequently represent biased contests where specific agents are ex-ante fa-

vored in the competitive process through, for instance, affirmative action or outright favoritism

by the contest organizer. Often, these forms of asymmetric treatment can be interpreted as grant-

ing head starts (or handicaps) to specific agents. Agents that enjoy head starts benefit from their

advantageous position in the sense that their rivals must first pass the head start to be able to

compete on equal footing. Naturally, the extent of the head starts has strategic implications for

favored agents, their respective rivals, and therefore also on the revenue that is generated in the

contest. A contest organizer who has the option to fit head starts to the underlying heterogeneity

of the contestants can therefore influence the generated contest revenue to some degree.

In this paper we characterize the maximal equilibrium revenue that can be generated in multi-

player contest games with the help of appropriately designed head starts. We concentrate on two

frameworks that are predominantly used in the contest literature; that is, all-pay auctions with

complete information introduced by Hillman and Riley (1989), [7], and lottery contests intro-

duced by Tullock (1980), [16]. Both models are sufficiently tractable and have been extensively

applied in various contexts, see Konrad (2009), [10], for a survey. However, our model de-

viates from the standard setup by allowing the contest organizer to specify idiosyncratic head

starts which can be interpreted as granting additive boni to the respective bids or effort levels of

favored players. From the perspective of a contest organizer who is interested in maximizing ag-

gregated equilibrium effort or bids (the expected revenue of the contest), specifying the optimal

head start becomes then the crucial instrument to increase contest revenue.

Our analysis proceeds by characterizing firstly the respective optimal head starts in the all-

pay auction and in the lottery contest framework. More precisely, for the all-pay auction we

construct a lower bound on aggregate equilibrium effort based on a specific head start that levels

the playing field among those two active contestants who endogeneously decide to participate

under the respective head start. For the lottery contest we provide conditions under which posi-

tive head starts maximize equilibrium revenue (and derive the corresponding optimal head start

for this case). These results allow us to compare the generated contest revenue among the two

frameworks which leads to our key result: Under optimal head starts the all-pay auction revenue-

dominates the lottery contest for all degrees of heterogeneity. While this result mirrors the rev-

enue ranking for multiplicative biases from Franke et al. (2014), [6], the underlying mechanisms

to induce additional revenue with the help of (multiplicative) biases and (additive) head starts

are substantially different. In the lottery contest, for instance, the optimal multiplicative bias is

specified such that effort exertion by weak contestants is favored which induces additional entry,
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comp. Franke et al. (2013), [5]. However, this mechanism does not work with additive head

starts because players basically reduce their effort in response to the granted head start. Hence,

depending on the underlying heterogeneity either no head start at all is optimal or the head start

is specified such that only the strongest player remains active (who then competes as if paired

against a fictitious rival whose effort level corresponds to the aggregate head starts of all other

non-active players). In the all-pay auction, in contrast, the optimal multiplicative bias is specified

such that only the two strongest contestants remain active and the playing field among those is

totally balanced, comp. Franke et al. (2014), [6]. Although there is also a leveled playing field in

the all-pay auction with optimal head starts, the set of active contestants might not consist of the

strongest contestants because depending on the underlying heterogeneity either the two strongest

contestants or the strongest and the weakest contestants will be active.

These new revenue comparisons also allow us to establish an unambiguous revenue-ranking

with respect to optimal head starts and biases in the two frameworks. The resulting ranking

implies, for instance, that revenue in the all-pay auction under optimal head starts is higher than

under the optimal bias. Hence, head starts are specifically effective for inducing revenue if the

contest is highly competitive as in the all-pay auction. By contrast, multiplicative biases are more

effective in the lottery contest as induced revenue in the lottery contest under the optimal bias is

higher than under optimal head starts. Nevertheless, the all-pay auction revenue dominates the

lottery contest independently of the fact whether the respective optimal head start or the optimal

bias is used in the two frameworks. Hence, if revenue maximization is the objective of the contest

organizer, then she should resort to the all-pay auction framework with optimal head starts.

Our study complements the mentioned literature on revenue maximization based on asym-

metric contest success functions with heterogeneous players. Moreover, our study also con-

tributes to the recent interest in the analysis of head starts in different competitive situations,

comp. Kirkegaard (2012), [8], Seel and Wasser (2014), [13], Li and Yu (2012), [11], Segev and

Sela (2014), [14], Nti (2004), [12], and Konrad (2002), [9]. However, all of the mentioned studies

(as most of the literature) are restricted to the two-player case. In this sense our characterization

of the optimal head start in the multi-player all-pay auction framework constitutes, for instance, a

direct extension of Li and Yu (2012), [11], to the multi-player case, while a similar relation holds

for the lottery contest analyzed in Nti (2004), [12]. To our knowledge there only exist three stud-

ies that involve head starts in multi-player all-pay auction or lottery contest frameworks. While

Siegel (2014), [15], considers head starts in multi-prize all-pay auctions, Wasser (2013), [17],

incorporates homogeneous head starts in a lottery contest framework. However, both studies

are rather interested in equilibrium characterization and not in the optimal design of the head
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starts. The only paper that explicitly addresses the design of optimal head starts (and biases) in

a multi-player framework is Dasgupta and Nti (1998), [4], based on a lottery contest. However,

they assume that players and head starts are homogeneous and find that in their specific case

no head start at all is optimal. Our study extends this framework by considering heterogeneous

contestants and heterogeneous head starts and shows under which conditions these previously

established results on optimal head starts still hold under heterogeneity.

The paper is organized as follows. In Section 2 we introduce the model setup and the two

frameworks. In Section 3 we determine a lower bound on equilibrium revenue under optimal

head starts in the all-pay auction. In Section 4 we analyze under which condition head starts

should be used in the lottery contest and identify the corresponding revenue. In Section 5 we

compare the induced revenue between the two frameworks and establish a complete revenue-

ranking which also incorporates previous result on optimal biases. Section 6 concludes.

2 The Model

There are n ≥ 2 players of set N = {1, . . . , n} that compete for an indivisible prize. Players

are heterogeneous with respect to their valuations of the prize and can be ordered decreasingly

with respect to their valuations: v1 ≥ v2 ≥ . . . ≥ vn > 0. The probability Pri(xi, x−i) of player

i ∈ N to win the prize depends positively on her bid xi ∈ [0,∞) and negatively on the bids

x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ [0,∞)n−1 of her rivals, where all bids are non-refundable. The

expected payoff for player i ∈ N is therefore:

πi(xi, x−i) := Pri(xi, x−i)vi − xi

The probability function Pri(xi, x−i) also depends on the specific design of the contest frame-

work. We focus in our analysis on the two most frequently used contest frameworks; that is,

a deterministic all-pay auction and a probabilistic lottery contest. More precisely, we consider

asymmetric versions of those two contest frameworks where each player i ∈ N potentially ben-

efits from an idiosyncratic head start δi ∈ [0,∞) that is added to player i’s bid without any costs.

Once, the decision on the framework is made and the respective head start δ = (δ1, . . . , δn) is

designed (given the specific framework), the probability for player i ∈ N to win the prize can be

expressed as follows:1

1Note, that our formulation also includes cases of handicaps (i.e., negative head starts) whenever a positive head

start for all other players j � i is equivalent to a negative head start for player i.
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1. For the all-pay auction with head start (framework HAA):

PrHAA
i (xi, x−i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if xi + δi > x j + δ j for all j � i,
1

k+1
, if xi + δi = x j + δ j for k agents j � i and

xi + δi > xl + δl for all other agents l � i,

0, if xi + δi < x j + δ j for some j � i.

2. For the lottery contest with head start (framework HLC):

PrHLC
i (xi, x−i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi+δi∑n

j=1 (x j+δ j)
, if

∑n
j=1 (x j + δ j) � 0,

0, if
∑n

j=1 (x j + δ j) = 0.

In our analysis we are specifically interested in deriving and comparing the maximal contest

revenue (the sum of expected equilibrium bids by all players) that can be induced in each frame-

work by specifying optimal head starts. We denote this maximal revenue by X∗,c :=
∑

i∈N E[x∗,ci ],

where E[x∗,ci ] denotes the expected equilibrium bid of player i ∈ N under the optimal head start

in framework c ∈ {HAA,HLC}. As head starts are framework-specific our analysis proceeds by

firstly characterizing the optimal head starts and the corresponding revenue separately in each of

the two frameworks and then comparing the maximal revenue between the two frameworks.2

For the all-pay auction framework HAA we derive a lower bound on maximal revenue based

on a specific head start that will depend on the heterogeneity of the players. Our results rely on

and extend the two-player analysis of Li and Yu (2012), [11], to the multi-player case. For the

lottery contest game we show that positive head starts do not always maximize contest revenue

and derive the respective condition on the degree of players’ heterogeneity. Given the condition is

met we construct the optimal head start which enables us to to determine maximal revenue in the

lottery contest. The obtained results are then used to prove the revenue-dominance of the all-pay

auction with optimal head starts over the lottery contest with optimal head starts for any degree

of heterogeneity. Moreover, a comparison with previous results for biased contest games from

Franke el al. (2014), [6], implies that the all-pay auction with optimal head starts also revenue

dominates unambiguously any multiplicatively biased all-pay auction or lottery contest.

2Our analysis can be alternatively framed as the design problem of a contest organizer, whose objective function

depends positively on contest revenue, and whose strategy space consists of the type of contest framework with

type-dependent head starts.
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3 Maximal Revenue in the All-Pay Auction

For the two player case the all-pay auction with head starts has been intensively analyzed, for

instance, in Li and Yu (2012), [11]. Our analysis of the multi-player all-pay auction is based

on these results in the following way: We first restrict the set of feasible head starts to those

under which exactly two players from set N are active. This allows us to obtain closed form

expressions for total revenue given this specific class of head starts. We then identify the optimal

pair of active players and the corresponding head start which implies that depending on the

underlying heterogeneity either the two strongest players or the strongest and the weakest player

will decide to be active. The resulting revenue from this head start must then constitute a lower

bound for maximal revenue under optimal head starts chosen from the non-restricted set. We

state this lower bound in the subsequent proposition.3

Proposition 3.1 An optimal head start δ∗ in the HAA framework yields total equilibrium revenue

that satisfies

X∗,HAA ≥ max

{
v2

2

2v1

+ v1 − v2

2
,

v2
n

2v1

+ v1 − vn

2

}
.

Proof. Consider the head start δi, j = (δ1, . . . , δn), where δi = δ j = v1 with i < j and δk = 0 for

all k � i, j. Under this specific head start player i and j will be active and bid positive amounts

while all other players will remain inactive (as they will never bid more than v1). Now apply Li

and Yu (2012), [11], Proposition 2, to construct an optimal head start that exactly neutralizes the

difference in valuation between the two active players and leaves all other players still inactive:

Head start δ∗i, j = (δ∗1, . . . , δ
∗
n) with δ∗i = δi, δ

∗
j = δ j+(vi−v j), and δ∗k = δk = 0 for all k � i, j, satisfies

this requirement because δ∗j−δ∗i = vi−v j ≥ 0 such that the playing field is leveled between player i

and j without affecting non-active contestants. Expected revenue is then: XHAA
(
δ∗i, j
)
=

v2
j

2vi
+vi− v j

2
.

Note that
∂XHAA

(
δ∗i, j
)

∂vi
= 1− 1

2

( v j

vi

)2
> 0, which implies that the head start should be specified such

that i = 1. Expected revenue is then XHAA
(
δ∗1, j
)
=

v2
j

2v1
+v1− v j

2
. Note that

∂XHAA
(
δ∗

1, j

)
∂v j

=
v j

v1
− 1

2
. Hence,

XHAA
(
δ∗1, j
)

is increasing for relatively high values of v j and decreasing for low values of v j. This

implies that the bias must be specified such that either j = 2 or j = n. The first case revenue

dominates the second if XHAA
(
δ∗1,2
)
> XHAA

(
δ∗1,n
)
⇔ v2

2

2v1
+ v1 − v2

2
>

v2
n

2v1
+ v1 − vn

2
⇔ v1 − v2 < vn.

3An alternative approach would be to construct the mixed-strategy equilibria in explicit form for the multi-

player all-pay auction with head starts. However, this is challenging because there presumably exists a continuum

of equilibria that are potentially not even revenue-equivalent (similar to the equilibrium characterization of the

symmetric all-pay auction in Baye et al. (1996), [2]). It should also be mentioned that our setup can neither be

transformed into a symmetric all-pay auction, nor is it possible to apply Siegel (2014), [15], to (a transformed

version of) our setup because his genericity assumption would preclude the use of the optimal head start δ∗.

8



Hence, if v1 − v2 < vn then the head start should be specified such that only player 1 and 2 are

active and δ∗2−δ∗1 = v1−v2 ≥ 0 which yields expected revenue of
v2

2

2v1
+v1− v2

2
. If v1−v2 > vn then

the head start should be specified such that player 1 and n are active with δ∗n − δ∗1 = v1 − vn ≥ 0,

which results in expected revenue of
v2

n
2v1
+ v1 − vn

2
.

Allowing any feasible head start (where potentially more than two players are active in equi-

librium) must therefore result in maximal revenue of at least max
{

v2
2

2v1
+ v1 − v2

2
,

v2
n

2v1
+ v1 − vn

2

}
. �

Note that the inequality in Proposition 3.1 holds as equality for n = 2 (as shown by Li and Yu

(2012), [11]). Moreover, one can show that a 2-player contest with head start δ = (δ1, δ2), where

0 ≤ δ2 − δ1 ≤ v1 − v2 such that the advantage in head starts for the weaker player 2 is not larger

than his disadvantage with respect to valuations,4 yields the following equilibrium payoffs and

revenue:

π1(δ1, δ2) = (v1 − v2) − (δ2 − δ1)

π2(δ1, δ2) = 0

XHAA (δ1, δ2) =
1

2
v2 +

v2
2

2v1

+ (δ2 − δ1)

Hence, in equilibrium a head start advantage of δ2−δ1 > 0 for the weaker contestant precisely

transfers (δ2 − δ1) units of payoff from the stronger player 1 to the contest revenue. The result

of Li and Yu’s (2012), [11], then says that a revenue maximizing contest organizer can direct all

of the expected profit of (v1 − v2), that player 1 obtains in the equilibrium with zero head starts,

away from player 1 into his own pocket by applying the optimal head start δ∗2−δ∗1 = v1−v2 which

then yields equilibrium revenue of XHAA(δ∗1, δ
∗
2) = 1

2
v2 +

v2
2

2v1
+ (v1 − v2) =

v2
2

2v1
+ v1 − v2

2
.

This should be contrasted with the situation under an optimal multiplicative bias, compare

Franke et al. (2014), [6]. Also there, the optimal bias implies that the equilibrium payoff of the

strongest contestant is reduced to zero, however, this payoff reduction of v1 − v2 is not entirely

transformed into revenue. In fact, in Franke et al. (2014), [6], it is shown that there is some loss

involved in this transformation because revenue is only increased by v1+v2

2v1
(v1 − v2). As v1+v2

2v1
< 1

the increase in revenue due to the optimal bias is lower than under the optimal head start.

4It suffices to consider this case for maximal revenue considerations as it cannot be optimal for the contest

organizer to apply head starts that turn the weaker player 2 into the effectively stronger player by setting δ2 − δ1 >
v1 − v2.
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4 Optimal Head Starts in Lottery Contests

Our analysis of the lottery contest framework starts with an explicit characterization of the equi-

librium given a specific head start δ by applying the method of Wasser (2013), [17]. We then

show that a positive head start (where δi > 0 for at least one player) can never be optimal if it

results in at least two players being active. Based on this result we then analyze the remaining

case with one active player and derive a condition under which a positive head start is opti-

mal. We construct the respective revenue maximizing head start in this case and determine the

corresponding maximal revenue.

The equilibrium characterization is based on the share function approach, suggested by

Cornes and Hartley (2005), [3]. We therefore perform a change of variables yi := xi + δi for

all i ∈ N , denote Y :=
∑n

j=1 y j, and normalize payoffs with respect to individual valuations

v1, . . . , vn. Consider then the equivalent game where each player i ∈ N chooses yi ∈ [δi,∞) and

obtains payoff

π̂i(y1, . . . , yn) =
yi

Y
− yi − δi

vi
.

The first order condition for i’s effort choice is

Y − yi

Y2
− 1

vi
≤ 0, with equality if yi > δi.

From this we obtain yi = max
{
Y − Y2

vi
, δi

}
and the share function

si(Y) =
yi

Y
= max

{
1 − Y

vi
,
δi

Y

}
.

Define fi(Y) := 1− Y
vi

and gi(Y) := δiY such that si(Y) = max{ fi(Y), gi(Y)}. Let the aggregate share

function be denoted by S (Y) :=
∑n

i=1 si(Y).

An effort profile x1, . . . , xn in the original contest is a pure-strategy Nash equilibrium if and

only if there is a Y∗ such that xi = si(Y∗)Y∗ − δi for each i ∈ N and S (Y∗) = 1. Note that for

players i who are active in equilibrium (xi > 0) we have si(Y∗) = fi(Y∗), whereas for inactive

players (xi = 0) we have si(Y∗) = gi(Y∗).
It is straightforward to show that there is a unique pure-strategy Nash equilibrium. S (Y) is

continuous and strictly decreasing. Moreover, S
(∑

j δ j

)
≥ ∑i gi

(∑
j δ j

)
= 1 and S (Y) < 1 for Y

large enough. Hence, there is a unique Y that solves S (Y) = 1.

Suppose there is an equilibrium where the nonempty subset of players K ⊆ N is active,
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whereas the remaining players are inactive. Hence, S (Y) = 1 is equivalent to

S (Y) =
∑
i∈K

fi(Y) +
∑
j�K

gj(Y) = |K| − Y
∑
i∈K

1/vi +
1

Y

∑
j�K
δ j = 1.

Solving this equation for Y we obtain

Y = Y(K) :=
|K| − 1 +

√
(|K| − 1)2 + 4

(∑
i∈K 1/vi

)(∑
j�K δ j

)
2
∑

i∈K 1/vi
.

In addition, define Y(∅) :=
∑

i δi. Hence, we have now defined a function Y(K) for all 2n possible

subsets K of the set N of players.

We will now show that the function Y(K) is maximized at the subset of players K that are

indeed active in equilibrium. Consider a set of active playersM that does not correspond to the

equilibrium. By definition, we have

∑
i∈M

fi(Y(M)) +
∑
j�M

gj(Y(M)) = 1.

However, sinceM does not correspond to an equilibrium, we must have at least one i ∈ Mwhere

fi(Y(M)) < gi(Y(M)) or one j �M where gj(Y(M)) < f j(Y(M)). Hence, S (Y(M)) > 1. Since

S is strictly decreasing, we must have Y(M) < Y(K), where K is the unique subset of players

that satisfies S (Y(K)) = 1.

The following proposition summarizes our findings.

Proposition 4.1 There is a unique pure-strategy Nash equilibrium for any valuation profile

(v1, . . . , vn) in the HLC framework. Let

K∗ = arg max
K⊆{1,...,n}

Y(K).

In equilibrium, players i ∈ K∗ exert effort

xi = Y(K∗) − Y(K∗)2

vi
− δi > 0, (1)

whereas players j � K∗ exert zero effort.

Moreover, note that fi(Y) ≤ gi(Y) for all Y if vi ≤ 4δi.
5 Hence, vi ≤ 4δi is a sufficient condition

5 fi(Y) ≤ gi(Y) is equivalent to Y − Y2

vi
− δi ≤ 0. The LHS is maximized at Y = vi

2
. Hence, the inequality holds if
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for player i to be inactive, which is independent of the cost and head start parameters of the other

players.

Based on this equilibrium characterization the expression for induced revenue in the lottery

contest for a given head start δ can be simplified as follows:6

XHLC(δ) :=
∑
i∈N

xi(δ) =
∑

i∈K∗(δ)
xi(δ) = Y(δ,K∗(δ)) −

n∑
i=1

δi.

Hence, the maximal revenue in the lottery contest can be obtained as the solution to the

maximization problem maxδ∈[0,∞)n Y(δ,K∗(δ)) −∑n
i=1 δi, where K∗(δ) = arg maxK⊆{1,...,n} Y(δ,K).

We solve this maximization problem by analyzing two cases: In the first case we consider

head starts under which at least two players are active and show that applying no head starts

instead, i.e., applying the zero head start δ0 := (0, . . . , 0), induces higher revenue. In the second

case we consider head starts under which exactly one player is active, derive the revenue max-

imizing head start and the respective revenue, and compare the results with those from the first

case.

Proposition 4.2 A lottery contest with zero head start δ0 induces higher equilibrium revenue

than a lottery contest with positive head starts δ provided that |K∗(δ)| ≥ 2 players are active.

Proof. Observe that, holding K fixed, we have

∂Y(δ,K)

∂δi
= 0 for i ∈ K , (2)

∂Y(δ,K)

∂δ j
=

1√
(|K| − 1)2 + 4

(∑
i∈K 1/vi

)(∑
j�K δ j

) ≤ 1

|K| − 1
for j � K ,

such that
∂Y(δ,K)−∑i δi

∂δ j
≤ 0 for all j ∈ N whenever |K| ≥ 2.

Suppose δ is such that |K∗(δ)| ≥ 2. This leads to the following chain of (in-)equalities which

proves the result:

XHLC (δ) = Y (δ,K∗ (δ)) −
n∑

i=1

δi < Y (δ0,K∗ (δ)) ≤ Y (δ0,K∗ (δ0)) = XHLC(δ0).

�

vi
2
− 1

vi

v2
i

4
− δi ≤ 0, which can be simplified to vi ≤ 4δi.

6From now on we change notation slightly to clarify that equilibrium values depend on the head start δ.
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Before we proceed to the second case where head starts involve only one active player, the

previous result should be put in context with respect to multiplicatively biased contest games,

see Franke et al. (2013), [5]. In fact, Proposition 4.2 is in stark contrast to the characterization

of the optimal (multiplicative) bias in lottery contests where the optimal bias is used to induce

additional entry of contestants to increase revenue. In the lottery contest with head starts, how-

ever, Proposition 4.2 implies that any positive head start under which at least two players are

active can only yield less revenue. Hence, head starts can never be used to increase revenue by

inducing additional entry, which would result in a higher number of active players than in the

case without head starts (where at least two players are active). Therefore, the only way left

to increase contest revenue beyond the zero head start level is to decrease the number of active

players to one by designing suitable head starts. This sounds a priori unlikely to work; however,

it should be noted that the remaining single active player has to compete against the sum of all

head starts of the other, inactive players. Increasing this sum by increasing the head start of at

least one inactive player leaves all of these players inactive while the remaining active player has

to counter a higher total of others’ head starts with possibly higher effort of his own. Hence,

contest revenue may increase if this argument does not alter the participation decisions of at least

one player. The following result provides a precise condition on the heterogeneity of valuations

under which an optimal head start involving only one active player yields higher contest revenue

than a contest without head starts.

For notational convenience we use the following notation for the set of active players in

lottery contests without head starts (i.e., where the zero head start δ0 is applied): K0 = K∗ (δ0)

and k0 = |K∗ (δ0)|.
Proposition 4.3 If v1

4
> k0−1∑

i∈K0
1/vi

, then there exist positive head starts δ∗ in the HLC framework

that result in equilibrium revenue XHLC (δ∗) = v1

4
> XHLC(δ0). Otherwise, XHLC(δ0) ≥ XHLC (δ)

for any δ ∈ [0,∞)n.

The proof proceeds with the help of three lemmata. In the first lemma revenue maximiz-

ing head starts δ∗ are characterized under the assumption that only one player is active. In the

second lemma a condition is derived such that a contest game with head start δ∗ induces higher

aggregated effort than a contest game with zero head starts. In the third lemma it is shown that

under the previously identified condition it is possible to construct a δ∗ such that in equilibrium

only player 1 is active. The one-player solution is optimal, whenever heterogeneity among active

players is sufficiently high; for instance, if vk0
< v1

4
, then the first assumption in Proposition 4.3

always holds.
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Lemma 4.4 Under the assumption that only one player is active, optimal head starts are of the

following form:

δ∗ :=
(
δ∗1, . . . , δ

∗
n
)
, where δ∗1 = 0 and

k0∑
j=2

δ∗j =
v1

4
. (3)

Proof. Assume that under head start δ player i is the only active player. Let Di :=
∑

j�i δ j be the

sum of head starts of player i’s rivals. The expected payoff function of player i under this head

start becomes u(xi, 0, . . . , 0) = xi+δi
xi+δi+Di

vi − xi, which is maximized for xi(δ) :=
√

Divi − δi − Di.

As player i is the only active player, equilibrium revenue is equal to individual effort: XHLC(δ) =

xi(δ). Maximizing this function with respect to δ implies that an optimal head start δ∗ should

satisfy δ∗i = 0 and D∗i =
vi
4

which results in contest revenue of XHLC(δ∗) = vi
4

. This function is

increasing in vi. Hence, the optimal head start should be specified such that player 1 is the active

player which leads to the optimal head start specification in (3). �

Note, that the statement in Lemma 4.4 effectively means that the zero head start solution

among two equally strong contestants with v1 = v2 is copied; that is, the strongest contestant 1

is made to compete as if he would face an equally strong opponent. This amounts to a ‘levelling

the field’-result.

Lemma 4.5 Assume that v1

4
> k0−1∑

i∈K0
1/vi

and that only one player is active under a head start δ∗

satisfying eq. (3). Then, XHLC (δ∗) > XHLC(δ0). Otherwise, XHLC (δ∗) ≤ XHLC(δ0).

Proof. In a contest game without head start aggregated effort is XHLC(δ0) = k0−1∑
i∈K0

1/vi
, where k0

is the largest integer that satisfies k0−1

vk0

<
∑

i∈K0
1/vi. The inequality XHLC(δ∗) > XHLC(δ0) leads to

the condition in the lemma. �

Lemma 4.6 Given that v1

4
> k0−1∑

i∈K0
1/vi

there exist optimal head starts satisfying eq. (3) such that

only player 1 is active in equilibrium.

Proof. The proof proceeds in two steps. First, we start from a contest game without any head

start and construct a head start δ̂ such that only player 1 is active in equilibrium. We then modify

δ̂ to get to the optimal head start δ∗ without affecting the set of active or non-active players.

1. Step: Without head starts all players i ∈ {1, . . . , k0} are active and exert xi(δ0) > 0 in

equilibrium, while all players j ∈ {k0 + 1, . . . , n} are non-active and exert x j(δ0) = 0.
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Note that for any positive head start granted to active players, eq. (1) and (2) imply that
∂xi(δ)
∂δi
= −1 and ∂xi(δ)

∂δ j
= 0 for all active players i, j ∈ {1, . . . , k0}. Hence, active players that

are directly affected by this type of head start reduce their equilibrium effort exactly by

the amount of their individual head start. This implies that xi(δ) = xi(δ0) − δi such that

’effective’ effort yi(δ) = xi(δ) + δi remains constant under any head start δi ∈ [0, xi(δ0)]

granted to active players from set K0 because yi(δ) = xi(δ) + δi = xi(δ0) = y(δ0).

Consider now a head start δ̂ with δ̂1 = 0, δ̂i = xi(δ0) for all i ∈ {2, . . . , k0} and δ̂ j = 0

for all j � K0. By the previous argument yi(δ̂) = xi(δ̂) + δ̂i = 0 + δ̂i = xi(δ0) = yi(δ0)

for all players i ∈ {2, . . . , k0}, which also implies that the strategic situation for all other

players is the same as before. The payoff function of player 1, for instance, who is the only

player that remains active, can then be expressed as u(x1, 0, . . . , 0) = x1

x1+D̂1
v1 − x1, where

D̂1 =
∑k0

i=2
δ̂i. Note, that this is exactly the same payoff as in the case with zero head starts:

u(x1, x2(δ0), . . . , xn(δ0)) = x1

x1+
∑n

j=2 x j(δ0)
v1 − x1. Hence, xi(δ̂) = xi(δ0) for all players i ∈ N .

Note also, that D̂1 <
∑

j∈K0
x j(δ0) < v1

4
.

2. Step: Starting from δ̂ the head start can be further modified by increasing individual head

starts (δ̂2, . . . , δ̂n) until D∗1 =
v1

4
is obtained. This modification will not alter the set of

active (player 1) or non-active players (however, the effort level of player 1 will be affected

positively). Hence, player 1 will be the only active player and the resulting modified head

start corresponds to δ∗ as characterized in eq. (3).

�

Proposition 4.3 implies that the optimal head start in lottery contests is either δ0 (zero head

starts for all players) or δ∗ depending on the underlying heterogeneity. This allows us to deter-

mine the maximal revenue that can be induced in a lottery contest with head starts.

Proposition 4.7 An optimal head start in the HLC framework yields equilibrium revenue

X∗,HLC = max

{
v1

4
,

k0 − 1∑
i∈K0

1/vi

}
, where K0 =

⎧⎪⎪⎨⎪⎪⎩ j ∈ N
∣∣∣ j − 1

v j
<

j∑
i=1

1/vi

⎫⎪⎪⎬⎪⎪⎭ .

5 Revenue Ranking

Based on the previous results we are now in a position to compare maximal revenue under op-

timal head starts in the all-pay auction and the lottery contest. The following proposition estab-
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lishes revenue-dominance of the all-pay auction with optimal head starts over the lottery contest

with optimal head starts for any degree of heterogeneity.

Proposition 5.1 The HAA framework induces higher equilibrium revenue than the HLC frame-

work: X∗,HAA > X∗,HLC. This holds for any given set of valuations v1 ≥ v2 ≥ . . . ≥ vn ≥ 0.

Proof. Based on Proposition 3.1 and 4.7 it is sufficient to show that the following inequality is

satisfied:

max

{
v2

2

2v1

+ v1 − v2

2
,

v2
n

2v1

+ v1 − vn

2

}
> max

{
v1

4
,

k0 − 1∑
i∈K0

1/vi

}
. (4)

We consider the following two cases:

(i) Suppose that max
{

v1

4
, k0−1∑

i∈K0
1/vi

}
= v1

4
. Then the inequality in (4) holds if

v2
2

2v1
+ v1 − v2

2
> v1

4

because max
{

v2
2

2v1
+ v1 − v2

2
,

v2
n

2v1
+ v1 − vn

2

}
≥ v2

2

2v1
+ v1 − v2

2
. Note, that

v2
2

2v1
+ v1 − v2

2
> v1

4
can

be reduced to (v2 − v1)2 + v1v2 +
1
2
v2

1 > 0 which always holds.

(ii) Suppose that max
{

v1

4
, k0−1∑

i∈K0
1/vi

}
= k0−1∑

i∈K0
1/vi

. From Theorem 4.3 in Franke et al. (2014),

[6], we know that v1+v2

2
> k0−1∑

i∈K0
1/vi

, because the optimally biased all-pay auction strictly

revenue-dominates the optimally biased lottery contest which by itself induces higher rev-

enue than the unbiased lottery which is equivalent to a lottery contest with zero head

starts. Now observe that
v2

2

2v1
+ v1 − v2

2
≥ v1+v2

2
because this inequality can be reduced to

(v1 − v2)2 ≥ 0 which always holds. Hence, we established the following chain of inequali-

ties: max
{

v2
2

2v1
+ v1 − v2

2
,

v2
n

2v1
+ v1 − vn

2

}
≥ v2

2

2v1
+ v1 − v2

2
≥ v1+v2

2
> k0−1∑

i∈K0
1/vi

. �

Hence, the revenue-ordering between the all-pay auction and the lottery contest with optimal

head starts is the same as between the all-pay auction and the lottery contest with optimal multi-

plicative biases (frameworks BAA and BLC), see Franke et al. (2014), [6]. Combining the two

revenue-dominance results yields a complete ranking of all four frameworks independent of the

underlying heterogeneity.

Proposition 5.2 There is an unambiguous revenue-ranking of all-pay auctions and lottery con-

tests with optimal head starts or multiplicative biases, respectively, for any given set of valuations

v1 ≥ v2 ≥ . . . ≥ vn ≥ 0:

X∗,HAA ≥ X∗,BAA > X∗,BLC ≥ X∗,HLC. (5)

Moreover, if v1 > v2 then the revenue-ranking is strict:

X∗,HAA > X∗,BAA > X∗,BLC > X∗,HLC.
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Proof. The first inequality of (5) holds because X∗,HAA ≥ v2
2

2v1
+ v1 − v2

2
≥ v1+v2

2
= X∗,HAA, see the

proof of case (ii) in Proposition 5.1. Note also, that v1 > v2 implies that X∗,HAA ≥ v2
2

2v1
+ v1 − v2

2
>

v1+v2

2
= X∗,HAA. The second inequality of (5) holds because the optimally biased all-pay auction

revenue-dominates the optimally biased lottery contest, see Theorem 4.3 in Franke et al. (2014),

[6]. It remains to prove the third inequality of (5) which can be stated as follows:

X∗,BLC =
1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑
i∈K̂

vi −
(
k̂ − 2

)2
∑

j∈K̂ 1/vi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≥ X∗,HLC = max

{
v1

4
,

k0 − 1∑
i∈K0

1/vi

}
, (6)

where k̂ satisfies k̂−2
vk̂
<
∑

i∈K̂ 1/vi, see Proposition 4.1 in Franke et al. (2014), [6] (or the original

derivation in Franke et al. (2013), [5]), and k0 satisfies k0−1

vk0

<
∑

i∈K0
1/vi, see the proof of Lemma

4.5. We consider the following two cases:

(i) Suppose that max
{

v1

4
, k0−1∑

i∈K0
1/vi

}
= v1

4
. Then the inequality in (6) holds if

∑
i∈K̂ vi− (k̂−2)

2

∑
j∈K̂ 1/vi

>

v1. Note, that
∑

i∈K̂ vi − (k̂−2)
2

∑
j∈K̂ 1/vi

>
∑

i∈K̂ vi − (k̂ − 2)vk̂ because k̂−2
vk̂
<
∑

i∈K̂ 1/vi. Hence, the

previous inequality holds if
∑

i∈K̂ vi − (k̂ − 2)vk̂ > v1. This inequality can be reformulated

as v1 + v2 +
∑k̂

i=3(vi − vk̂) > v1 which always holds because vi ≥ vk̂ for any i ≤ k̂.

(ii) Suppose that max
{

v1

4
, k0−1∑

i∈K0
1/vi

}
= k0−1∑

i∈K0
1/vi

. From Franke et al. (2013), [5], we know that

X∗,BLC ≥ k0−1∑
i∈K0

1/vi
because the expression on the right-hand side is not only the contest

revenue under the zero head start δ0 = (0, . . . , 0) but also the equilibrium revenue under

the unbiased lottery, i.e., where a neutral multiplicative bias αBLC = (1, . . . , 1) is applied.

Note also, that this inequality becomes strict if v1 > v2.

�

Proposition 5.2 has two important implications: Firstly, it shows that the all-pay auction with

optimal head starts revenue-dominates any symmetric or asymmetrically biased all-pay auction

or lottery contest and any all-pay auction or lottery contest with non-optimal head starts. Hence,

a contest organizer interested in maximizing revenue should resort to the all-pay auction frame-

work with optimal head starts. Secondly, the established revenue-ranking implies that head starts

are specifically effective for increasing revenue in highly competitive situations like the all-pay

auction framework while they are comparatively ineffective in less competitive situations like

the lottery contest (in fact, Proposition 4.7 implies that for some degree of heterogeneity using

positive head starts even results in lower contest revenue than using zero head starts). Hence, the
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difference in maximal revenue using optimal head starts in all-pay auctions versus lottery con-

tests is substantially higher that the respective revenue-difference using biases between the two

frameworks. Optimal head starts in the all-pay auction increase total revenue beyond the level re-

sulting from optimal biases; while any positive head start in the lottery contest decrease revenue

below the level resulting from optimal biases as soon as two players are active in equilibrium.

6 Conclusion

Granting head starts are a potentially very effective instrument to increase competitive pressure

among competing contestants and therefore to induce higher contest revenue. However, the ef-

fectiveness of head starts depends on the underlying contest framework in which it is applied.

In the case of the highly discriminatory all-pay auction head starts can always be designed such

that the level playing field among the two active contestants is totally balanced which also im-

plies that the equilibrium payoff of the strongest contestant is reduced to zero. This payoff-loss

due to increased bidding is transformed one-to-one into additional revenue for the contest orga-

nizer which is even more effective than under the optimal multiplicative bias. Hence, an all-pay

auction with an optimally specified head start does not only revenue-dominate symmetric all-pay

auctions without head starts but also any asymmetrically biased all-pay auction or lottery contest.

In the lottery contest framework, however, head starts are rather ineffective in generating

additional revenue. Basically, active contestants that receive a head start reduce effort exertion

to the same degree as the amount of the received head start; for them, head starts are perfect

substitutes for own effort. As the ’effective’ effort (effort plus head start) of directly affected

contestants remains constant, non-affected contestants will not change their strategic response

either. In the aggregate, contest revenue under head starts tends to be lower such that zero head

starts would be the preferred option. The only exception is the case where exactly one player

remains active who has to compete de-facto against the sum of applied head starts granted to

all other non-active players. This type of head start might in some cases revenue-dominate the

zero head start case. However, its potential to generate additional revenue is severely limited

due to the fact that all other contestants refrain from exerting any effort. In the end the lottery

contest with positive head starts is revenue-dominated by the optimally biased lottery contest and

therefore also by the all-pay auction with optimal head start or bias.

A natural extension of our analysis would be to consider simultaneous head starts and biases;

that is, the bid xi of each player is transformed according to the affine transformation αixi + δi

for all i ∈ N . We conjecture that our results would also hold under this generalization: For the
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all-pay auction the lower bound derived in Prop. 3.1 presumably cannot be further increased by

allowing additional biases. Likewise in the lottery contest it might not be possible to improve

on the revenue generated under the optimal bias by allowing additional head starts. Moreover,

affine transformations of the considered type can potentially be generalized even further. For the

homogeneous n-player and the heterogeneous two-player case Dasgupta and Nti (1998), [4], and

Nti (2004), [12], show that a contest game involving any positive and increasing transformation

is strategically equivalent to a contest game with an appropriately specified affine transformation

as above. Whether their results can be extended to the heterogeneous n-player case is left for

future research.
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