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A Non-Parametric Approach

Abstract

This article provides a robust non-parametric approach to demand analysis based on a 
concept called homothetic effi  ciency. Homotheticity is a useful restriction or assumption 
but data rarely satisfy testable conditions. To overcome this problem, this article 
provides a way to estimate homothetic effi  ciency of consumption choices by consumers.  
The basic effi  ciency index suggested is similar to Afriat’s (1972) effi  ciency index and 
Varian’s (1993) violation index. It generalises Heufer’s (2013b) two-dimensional concept 
to arbitrary dimensions and is motivated by a form of rationalisation similar to the one 
proposed by Halevy et al. (2012).  The method allows to construct scalar factors which 
can be used to construct revealed preferred and worse sets. The approach also provides 
considerably more discriminatory power against irrational behaviour than standard 
utility maximisation. An application to experimental and household expenditure data 
illustrates how the method allows to recover preferences and increase test power.
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1 introduction

Homotheticity of consumer preferences is an important and useful concept in both theoretical and empirical
work. If a consumer’s preferences are homothetic, we can deduce his entire preference relation from a single
indifference set. It therefore allows to recover much more of the preferences from a limited data set. Fur-
thermore, testing data for homothetic utility maximisation can provide substantially stronger discriminatory
power against alternative hypothesis than testing for utility maximisation alone. Homotheticity has important
implications in many different fields of economics; for examples, aggregation of consumer demand and the
existence of “community indifference curves”, modelling of separable preference structures and its connection
to two-stage budgeting, and as a common assumption in the international trade literature.

1.1 Summary of Contributions

The purpose of this article is to provide measures for the homothetic efficiency of a data set. We introduce the
Homothetic Efficiency Index (Hei) which is a homothetic analogue to the well known Afriat Efficiency Index
(Aei, also known as the Critical Cost Efficiency Index, Ccei) which can be interpreted as a measure of wasted
income. The Hei generalises the index proposed by Heufer (2013b) for the two-dimensional case. We also
extend this measure by introducing the Homothetic Efficiency Vector (Hev) which provides efficiency indices
for each observed choice and allows for a more detailed and robust data analysis.

Varian’s (1983) Homothetic Axiom of Revealed Preference (Harp) can be easily tested with a set of data. It
is a necessary and sufficient condition for consistency with homothetic utility maximisation and therefore
characterises the hypothesis of homothetic preferences. However, it is an unambigious test: Either the data
satisfy Harp or not. When Harp is violated, the measures introduced here show how close the data come to
being consistent with Harp. Both the Hei and the Hev provide the minimal adjustments which are required
to make a data set consistent with homothetic utility maximisation. The measures are motivated by e- and
h-rationalisation which is similar to a concept recently introduced by Halevy et al. (2012). As Harp is a rather
strong condition, it is often violated; without efficiency measures the only conclusion is then that the data is
not perfectly consistent. Our measures allow us to go further by quantifying and interpreting the extent of the
inconsistency.

We show how the Hei and the Hev can be used to recover more about a consumers’ preference relation
when a set of data comes reasonably close to homotheticity. This extends Varian’s (1982) and Knoblauch’s
(1993) approach to non-parametric recoverability of preferences to a situation where data can be assumed to
be the result of homothetic utility maximisation with minor errors.

To illustrate and motivate the methods put forward in this paper we apply them to two data sets. The first
application is to data from an experimental dictator game conducted by Fisman et al. (2007). Using this data, we
show how our methods can recover detailed information about subjects’ preferences. The second application
is to a panel of expenditures on non-durable consumption categories for 3,134 Spanish households. With this
data, previously analysed in e.g. Browning and Collado (2001) and Crawford (2010) and Cherchye et al. (2014),
we show that homothetic efficiency can be very high and still have considerably more discriminatory power
against irrational behaviour than standard utility maximisation.
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1.2 Implications and Applications

Testing and Test Power

Non-parametric tests for homotheticity in consumption and production theory have been considered in the
literature before. Varian (1983) introduced Harp, an easily testable axiom that characterises monotonic and
convex homothetic utility maximisation. Liu and Wong (2000) provided a stronger testable condition, which
characterises strictly convex homothetic utility maximisation.

Testing data for consistency with Varian’s (1982) Generalised Axiom of Revealed Preference (Garp), which
is a necessary and sufficient condition for non-satiated utility maximisation, is as unambigious as the test for
Harp. The data will either satisfy Garp or not. In cases where the data does not satisfy Garp, studies usually
report an efficiency measure such as the Aei combined with various power measures. Themost frequently used
power measure was introduced by Bronars (1987) who suggested using Monte Carlo methods to compute the
power of a test for Garp. One can generate many sets of random choices, usually from a uniform distribution
on the budgets, and test these sets for consistency with Garp. The percentage of sets which do not satisfy
Garp is the approximate test power.

One problem with the revealed preference approach is that the test power is sometimes very low. This is
particuarly true when we wish to allow for small errors in decision making or for measurement error. For
example, we might deem an Aei of 0.95 to be acceptable, but allowing for this extent of errors can lead to such
a low power that the empirical analysis becomes almost meaningless. Harp is a stronger condition than Garp,
and we can expect that it is far less likely that a set of random choices satisfies Harp. However, Harp will
often also not be satisfied by the real data.1 But homothetic efficiency can be very high for consumer choice
data, as we demonstrate in the empirical part of the paper. Thus, homothetic efficiency may provide for an
empirical analysis that has substantial discriminatory power against alternative hypothesis such as random
behaviour, even when this is not the case for standard efficiency.

This is strongly supported by the results from our empirical applications. Specifically, our main results
can be summarized as follows: (i) efficiency can be very high for Harp, thus providing motivation to assume
homothetic preferences, (ii) Harp has noticably higher power than Garp for consumer choice data. For
example, while the power of Garp can be below 10 percent for consumer choice data, the power of Harp is
close to 100 percent, (iii) adjusting expenditure for efficiency in Harp has negligible effects on the power.
Thus, Harp can have substantially higher power than Garp even when expenditure is adjusted for efficiency.

Heufer (2013a) provided a method to compute random choice data which satisfy Garp. This can be used
to generate utility maximising choice sets that are tested to comply with Harp, which provides a conditional
test power – the probability that a random choice set does not satisfy Harp given that is does satisfy Garp.
We show that this is the case for both the experimental and consumer choice data.

Recoverability and Parametric Estimates

Varian (1982) described in detail the ways in which a researcher can recover everything that can be said about a
consumer’s preference based on a finite set of consumption data (see also Knoblauch 1992). Knoblauch (1993)
extended Varian’s approach to homothetic recoverability. Assuming homotheticity of preferences, if justified,
allows the researcher to recover more information about the consumer’s preferences.

Our approach allows for this extended recoverability even when homotheticity is violated by providing a
way to adjust the data accordingly; with high homothetic efficiency, only minor adjustments are necessary. Our

1Manser andMcDonald (1988) is a notable exception. They analyse U.S. consumption data from 1959 to 1985 on 101 commondities
and find that homothetic preferences are consistent with this data.
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empirical application demonstrate the usefulness of this approach by showing examples of revealed preferred
and worse sets of subjects using data from the experiment carried out by Fisman et al. (2005). We show how a
simple graphical analysis provides substantial information about the preferences of subjects.

Empirical work often focusses on estimating parameters of particular functional forms corresponding to
homothetic utility functions, or demand systems (Cobb-Douglas and CES are two notable examples which are
widely used in the literature). If the estimated utility function is homothetic, testing the data for consistency
with Harp and computing efficiency measures can be employed as a robustness check or screening device.
Consequently, it may be advisable not to estimate parameters in homothetic demand systems using data with
low homothetic efficiency.

Recently, Halevy et al. (2012) introduced methods for parametric recoverability, where parameters are not
estimated by minimising a statistical loss function but rather by maximising the money metric utility of a
consumer, which is bounded by the revealed preference relation implicit in his set of choices. The extended
homothetic recoverability we propose can lead to tighter bounds on the money metric utility function of a
consumer and therefore allow for a better estimation of parameters, in particular those of homothetic utility
functions.

Aggregation

Eisenberg (1961) showed that if income shares are fixed and every consumer’s utility function is homothetic,
then the market demand generated by individual utility maximisation is also generated by maximising a
single homothetic utility function. This result shows that homotheticity of utility is a necessary condition
for the existence of “community indifference curves” or “average preferences” (see also Gorman 1953). Thus,
testing data for how close they come to homotheticity is easily motivated by the important implications for
aggregation. See also Chipman (1965) for a discussion of demand aggregation in trade theory, Chipman (1974),
Mantel (1976), Polemarchakis (1983), and Varian (1984b) on further issues of aggregation and homotheticity,
and Shafer and Sonnenschein (1982) for a survey on market demand.

Two-Stage Budgeting, and Estimation of Demand Systems

It is standard practice when estimating large demand systems to impose separability restrictions. Often
separable blocks are constructed in the form of a utility tree, usually referred to as the two-stage budgeting
approach (Deaton and Muellbauer 1980). Gorman (1959) showed that, in general, homothetic separability (i.e.,
when sub-utility functions are homothetic) is a necessary and sufficient condition for two-stage budgeting.
Thus, our methods can be used as pre-tests to check whether homothetic separability is a plausible assumption,
and also provide guidance to which functional form be used for the sub-utility functions.

International TradeTheory

Theories of international trade typically assume that consumers have homothetic preferences, where the main
purpose is to show that product differentiation, increasing returns and firm heterogeneity are decisive factors
in explaining the extensive and intensive margins of international trade (see e.g. Krugman 1980, Melitz 2003,
Helpman et al. 2008, Chaney 2008). The assumption of homothetic preferences in these models provide
means and tools of analysing situations where technology rather than demand factors are the main driving
force of aggregate outcomes. Assuming homotheticity also makes these models more tractable for empirical
implementation. Thus, our methods can be used to test the underlying assumptions in the models.
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Translation to Production Analysis

Hanoch and Rothschild (1972) and Varian (1984a) described non-parametric ways to test production for
homotheticity.2 Because this theory is very similar to testing for homotheticity in a consumer choice setting,
our methods can be easily adapted to calculate homothetic efficiency of allocating factor inputs in production,
and also recover detailed information about the underlying production technology. Varian (1984a) also
considered tests for constant returns of scale in production analysis. Our methods can be adjusted accordingly
to calculate homothetic efficiency for factor allocation in constant returns to scale technologies and recover
information about such technologies. Finally, it is important to note that homothetic production functions,
such as Cobb-Douglas and CES, are extensively used in, for example, empirical macroeconomics when
modelling the economy’s underlying production technology.3

1.3 Outline

The rest of the paper is organised as follows. Section 2 introduces the notation, recalls basic revealed preference
theory and the non-parametric analysis based on Varian (1982) and, for the particular case of homotheticity,
the contribution of Knoblauch (1993). Section 3 introduces the concept of homothetic efficiency and shows
how extended recoverability is still possible when Harp is violated but homothetic efficiency is high. Section
4 uses two data sets to apply the proposed method. Section 5 concludes. The appendix in Section A contains
all proofs. A supplementary “computable document” prepared with Wolfram Mathematica® that allows a
graphical analysis of revealed preferred and worse sets recovered with our method can be downloaded from
the internet (see Section 4.2).

2 preliminaries

2.1 Notation and Utility Maximisation

The commodity space isRL
+ and the price space isRL

++, where L ≥ 2 is the number of different commodities.4 A
(competitive) budget set is defined as Bi = B(pi ,w i) = {x ∈ RL

+ ∶ pixi ≤ w i}, where pi = (pi1 , . . . , piL)′ ∈ RL
++ is

the price vector and w i ∈ R++ is the wealth level of the consumer. A demand function D ∶ RL
++ ×R++ → R

L
+ of

a consumer assigns to each budget set the commodity bundle chosen by the consumer. Unless otherwise noted,
we assume that demand satisfies budget balancedness (i.e., pixi = w i). We assume that the only observables of
the model are N ≥ 1 different budgets and the corresponding demand of a consumer. It will be convenient
to work with normalised prices: If the budget is B(qi ,w i), we set pi = qi/w i .5 We will then also identify a
budget with its characterising price vector, so the entire set of N observations on a consumer is denoted as
Ω = {(xi , pi)}Ni=1.

The bundle xi is directly revealed preferred to a bundle x, written xi R0 x, if pixi ≥ pix; it is strictly directly
revealed preferred to x, written xi P0 x, if pixi > pix; it is revealed preferred to x, written xi R x, if R is the
transitive closure of R0, that is, if there exists a sequence x j, . . ., xk , such that xi R0 x j R0 . . . xk R0 x. The
bundle xi is strictly revealed preferred to x, written xi P x, if xi R x j P0 xk R x for some j, k = 1, . . . ,N .

2Silva and Stefanou (1996) provided a generalisation of these tests.
3For policymatters, the U.S. Congressional Budget Office (CBO), for example, assumes that the economy’s underlying production

technology is Cobb-Douglas.
4The following notation is used: For all x, y ∈ RL , x ≧ y if xi ≥ yi for all i = 1, . . . , L; x ≥ y if x ≧ y and x ≠ y; x > y if xi > yi for

all i = 1, . . . , L. We denote RL
+ = {x ∈ RL ∶ x ≧ (0, . . . , 0)} and RL

++ = {x ∈ RL ∶ x > (0, . . . , 0)}.
5This normalisation is routinely applied in revealed preference analysis. The implicit assumption is that demand is homogeneous.
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Axiom (Varian 1982) A set of observations Ω satisfies the Generalised Axiom of Revealed Preference (Garp)
if for all i , j = 1, . . . ,N, it holds that [not xi P0 x j] whenever x j R xi .

We say that a utility function u ∶ RL
+ → R rationalises a set of observations Ω if u(xi) ≥ u(y) whenever

xi R0 y. LetU denote the set of all continuous, non-satiated, monotonic, and concave utility functions. Garp is
easily testable and a necessary and sufficient condition for utilitymaximisation, asTheorem 1 (Afriat’sTheorem)
below shows.

Theorem 1 (Afriat 1967, Diewert 1973, Varian 1982, Fostel et al. 2004) The following conditions are equivalent:
1. the set of observations Ω satisfies Garp;
2. there exist numbers U i , λi > 0 such that

U i ≤ U j + λ jp j(xi − x j) (1)

for all i , j = 1, . . . ,N;
3. there exist numbers V i such that

V i ≥ V j whenever pixi ≥ pix j , and (2)
V i > V j whenever pixi > pix j (3)

for all i , j = 1, . . . ,N;
4. there exists a u ∈U which rationalises the set of observations Ω.

Theorem 1 contains three testable conditions. While conditions 2 and 4 are well-known and can be found
in e.g. Varian (1982), condition 3 seem rather new in the literature. Cherchye et al. (2014), for example, use this
condition to derive new non-parametric tests for weak separability. We make explicit use of this condition
below to formulate new methods to calculate efficiency indices.

To test a set of observations for consistency with Garp, Varian (1982) suggests to use the Floyd-Warshall
algorithm (Floyd 1962, Warshall 1962), which is used to find the shortest path from one vertex to another in a
weighted graph. To see how this can be used for testing Garp, construct an N × N matrixM = {mi , j}, with

mi , j =
⎧⎪⎪⎨⎪⎪⎩
1 if xi R0 x j ,
0 otherwise.

Then we can think ofM as a directed graph with N vertices with a path from vertex i to j if mi , j = 1. Then
construct an N × N cost matrix C = {ci , j}, where

ci, j =
⎧⎪⎪⎨⎪⎪⎩
1 if mi , j = 1
∞ otherwise.

ci , j can be interpreted as the cost of moving from vertex i to vertex j, which is finite if and only if there is an
edge connecting these to vertices. Applying the Floyd-Warshall algorithm to the cost matrix C will give us the
minimum cost matrix C∗, where c∗i , j < ∞ if and only if xi R0 x j. The algorithm therefore allows us to compute
the transitive closure of R0.
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However, Varian (1996) already noted that computing the Nth power of the Boolean matrix and applying
the signum function to the elements can also be used to compute the transitive closure. This approach can be
substantially faster.6

Finally, Theorem 1 also shows that one can construct linear programming problems to either check if there
exist numbers U i and λ j satisfying the Afriat inequalities in Eq. (1), or check whether there exist numbers V i

satisfying the inequalities in Eqs. (2) and (3). The intuition behind these latter inequalities is very simple: if
a consumer chooses the bundle xi at prices pi when x j also was affordable, then he gains more utility from
consuming xi , which is reflected by V i > V j where V i can be thought of utility indices at time i = 1, . . . ,N .

2.2 Utility Maximisation and Efficiency

When a set of observations does not satisfy Garp, it is interesting to obtain a measure of how severe the
violation is. One of the most popular measures for the severity of a violation is the Afriat Efficiency Index (Aei)
due to Afriat (1972), also called the critical cost efficiency index (Ccei).7 Define, for some e ∈ [0, 1], the relation
R0(e) as xi R0(e) x j if e pixi ≥ pix, and let R(e) be the transitive closure of R0(e); furthermore, define the
relation P0(e) as e pixi > pix. With these concepts, we can define a new version of Garp, called Garp(e).
Axiom A set of observations Ω satisfies Garp(e) for some e ∈ (0, 1] if for all i , j = 1, . . . ,N, it holds that
[not xi P0(e) x j] whenever x j R(e) xi .

The Aei is the greatest number e such that Garp(e) is satisfied; it is a measure of wasted income: If a
consumer has an Aei of e < 1, then he could have obtained the same level of utility by spending only a fraction
e of what he actually spent to obtain this level. To compute the Aei when Garp is violated, Varian (1990)
describes a binary search routine which he attributes to Houtman and Maks (1987).

The Aei is a summary statistic but does not provide information about which observed choices are causing
the deviation from Garp. Varian (1993) defines a more disaggregated measure which he calls the violation
index. Let v = (v1, . . . , vN) be a vector, with

vi = min
{ j∶ x j R xi}

pix j . (4)

If the data satisfy Garp, then vi = 1 for all i. Otherwise, vi < 1 for some i, and this provides information about
which xi are problematic. A further generalisation of Garp(e) is helpful to understand v.

Axiom A set of observations Ω satisfies Garp(v) for some v ∈ (0, 1]N if for all i , j = 1, . . . ,N, it holds that

[not xi P0(vi) x j] whenever x j R(v j) xi .
Varian (1993) proves the following proposition.

Proposition 1 (Varian 1993) Any set of observations Ω satisfies Garp(v).
6The Floyd-Warshall algorithm is of order O(N 3), while the computation of the Nth matrix power can be substantially faster.

For example, Coppersmith and Winograd (1990) provide a method that is of order O(log2(K)N
2.376) for the Kth power. Even this

can possibly be improved upon for some Boolean matrices (see, e.g., Razzaque et al. 2008).
7Reporting the Aei has become a standard for empirical studies, in particular experimental ones. See, for example, Sippel (1997),

Mattei (2000), Harbaugh et al. (2001), Andreoni and Miller (2002), Février and Visser (2004), Choi et al. (2007b), Fisman et al.
(2007), Dickinson (2009), Camille et al. (2011). See Gross (1995) for a survey of other measures. Most recently, Echenique et al. (2011)
provided a new measure based on a money pump argument.
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Varian (1993) also notes that the vector v does not, in general, give the minimum perturbation of budgets
required. He provides an improved violation index, computed with an iterative algorithm that determines the
minimal vi for each i required to break each revealed preference cycle in the data. See also Cox (1997) for a
discussion of the improved violation index.

One can also use alternative methods to compute v. Motivated by the equivalence between Garp and the
Afriat inequalities in Eq. (1), it can be shown that Garp(v) is equivalent to there existing numbers U i and
λi > 0 such that the inequalities

U i ≤ U j + λ jp j(xi − v jx j), (5)

hold for all i , j = 1, . . . ,N . The indices can then be calculated by maximizing ∥v1, . . . , vN∥ in some finite
dimensional metric ∥ ⋅ ∥ such that the inequalities in Eq. (5) hold. However, this problem has non-linear
(quadratic) constraints which makes it non-trivial, and consequently, may become difficult to solve in practice.
Alternatively, the indices can be computed from a slight modification of the inequalities in Eqs. (2) and (3).
Specifically, it is easy to see that Garp(v) is equivalent to the following inequalities:

V i ≥ V j whenever v ipixi ≥ pix j , and (6)
V i > V j whenever v ipixi > pix j . (7)

In contrast to the inequalities in Eq. (5), these inequalities are linear, and therefore more suitable for empirical
work. However, since there are unknowns entering both the left-hand and right-hand sides, they cannot be
solved with a simple linear programme. To link the two sides, we suggest using binary variables.8 Specifically,
the inequalities in Eqs. (6) and (7) are equivalent to that there exist numbers V i and binary numbers X i j such
that, for all observations i , j = 1, . . . ,N ,

V i − V j < X i j , (mip.i)
(X i j − 1) ≤ V i − V j , (mip.ii)

v ipixi − pix j < X i jAi , (mip.iii)
(X i j − 1)Aj ≤ p jxi − v jp jx j , (mip.iv)
0 ≤ V i < 1, (mip.v)
X i j ∈ {0, 1}, (mip.vi)

where Ai > pixi + 1 is a fixed number. We suggest to calculate the efficiency indices v by solving the following
mixed integer linear programming (Milp) problem with respect to V i , X i j and v i :

max
N∑
i=1

v i subject to (mip.i)-(mip.vi) and v ∈ (0, 1]N (8)

Since any solution to a Milp problem is, in fact, a global solution, this problem is guaranteed to find a global
optimum (in the L1-norm) in the efficiency indices v. Given this approach, we can formally define a vector
efficiency index: We say that a vector ṽ is aVarian Efficiency Vector (Vev) for Ω if Ω satisfies Garp(ṽ) and there
does not exist a v′ ≥ ṽ such that Ω satisfies Garp(v′). When v is computed using the above Milp-approach, it
will be a Vev.

8See Cherchye et al. (2014) for a similar approach in the context of testing for weak separability of the utility function.
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2.3 Recoverability of Preferences

Preferences implicit in a set of data can be recovered using the methods provided by Varian (1982): Given
some bundle x0 ∈ RL

+ which was not necessarily observed as a choice, the set of prices which support x0 is
defined as

S(x0) = {p0 ∈ RL
++ ∶ {(xi , pi)}Ni=0 satisfies Garp and p0x0 = 1}. (9)

Varian (1982) uses S(x0) to describe the set of all bundles which are revealed worse and revealed preferred to
a bundle x0: The set of all bundles which are revealed worse than x0 is given by

RW(x0) = {x ∈ RL
+ ∶ for all p0 ∈ S(x0), x0 P x} (10)

and the set of all bundles which are revealed preferred to x0 is given by

RP(x0) = {x ∈ RL
+ ∶ for all p ∈ S(y), xP x0}. (11)

The following fact follows directly from the definition; see also Varian (1982, Fact 3).

Fact 1 x ∈ RW(x0) if and only if x0 ∈ RP(x).
The convex hull CH of a set of points Y = {yi}Mi=1 is defined as

CH(Y) = {x ∈ RL ∶ x = M∑
i=1

λi yi , yi ∈ Y , λi ≥ 0, M∑
i=1

λi = 1} . (12)

The convex monotonic hull of a set of points Y is defined as

CMH(Y) = CH({x ∈ X ∶ x ≥ yi for some i ∈ {1, . . . ,M}}). (13)

Let intCMH(Y) denote the interior of CMH(Y). The following Proposition provides an easy way of deter-
mining whether x ∈ RP(x0) and, by Fact 1, also whether x ∈ RW(x0) (see Varian (1982) and Knoblauch (1992)
for a proof).

Proposition 2 Suppose Ω satisfies Garp. Then

intCMH({xi ∶ xi R x0}) ⊆ RP(x0) ⊆ CMH({xi ∶ xi R x0}).
Finally, note that variations of the sets RP and RW can still be constructed if Garp is violated. Obviously,

S(x0) will be empty in this case, but based on Proposition 2, one can still compute the convex monotonic hulls
and analyse the result. However, this will necessarily lead to intersection of RP(x) and RW(x) for some x.
Thus, it would more appropriate to base the constructions on R(e) or R(v), and to define S(x0) in terms of
Garp(e) or Garp(v).
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2.4 Homotheticity

2.4.1 Definition and Tests

Homotheticity is a restriction on preferences. We say that a utility function is homothetic if it is a positive
monotonic transformation of a linearly homogeneous utility function; that is, if u(x) > u(y) then u(λx) >
u(λy) for all λ > 0. Varian (1983) provides the following axiom, which he shows is equivalent to homothetic
rationalisation (Theorem 2).

Axiom (Varian 1983) A set of observations Ω satisfies the Homothetic Axiom of Revealed Preference (Harp)
if for all distinct choices of indices i , j, k, . . . , ℓ, it holds that

(pix j)(p jxk)⋯(pℓxi) ≥ 1.
Theorem 2 (Varian 1983) The following conditions are equivalent:

1. the set of observations Ω satisfies Harp;
2. there exist numbers U i > 0 such that

U i ≤ U jp jxi (14)

for i , j = 1, . . . ,N;
3. there exists a homothetic u ∈U which rationalises the set of observations Ω.

Varian (1983) provides an efficient method to test a set of observations for consistency with Harp. First
note that Harp can equivalently be expressed as

log(pix j) + log(p jxk) + . . . + log(pℓxi) ≥ 0.
One can then apply the Floyd-Warshall algorithm to the cost matrix C = {ci , j} with ci, j = log(pix j). Harp re-
quires that the cost of moving from vertex i to itself in the weighted graph with associated cost matrix C
cannot be made cheaper than 0 (i.e., there are no negative cost cycles). The Floyd-Warshall algorithm will
compute the minimum cost for such a graph if there are no negative cost cycles, otherwise it will detect that
such a cycle is present.

2.4.2 Homothetic Recoverability of Preferences

Following Knoblauch (1993), define for a set of observations which satisfies Harp a scalar

ti,♢ =min{(pix j)(p jxk)⋯(pℓx♢)} , (15)

where the minimum is over all finite sequences i , j, . . . , ℓ between 1 and N inclusive, and t♢,♢ = 1. Note that♢ can be the index of an observed choice xm or be equal to 0 for a bundle x0 which was not observed as a
choice. We can compute ti ,0 for any arbitrary bundle x0 as we do not need a price vector p0. We say that ti ,♢xi

is homothetically revealed preferred to x♢, written ti,♢xi H x♢. The scalar t = ti ,♢ is the smallest value such that
t xi H x♢. Note that if ti ,♢ = (pix j)⋯(pkxℓ)⋯(pmx♢), then ti ,♢ = ti ,k tℓ,♢.

For practical applicationswithmany different x0, to compute ti ,0 it can bemore efficient to compute amatrix
T = {ti, j} with i , j = 1, . . . ,N once, set t0,0 = 1, and then find the index j which minimises ti, j(p jx0). The
matrix T can be computed with the Floyd-Warshall algorithm by setting ci, j = log(xip j); then ti , j = exp(c∗i, j).

12



Figure 1 illustrates the scalar factors in Eq. (15) with an example with three observations. In (a), we see that
t2,3 = p2x3. In (b), x1 can be scaled up so that it still is homothetically revealed preferred to t2,3x2, and we find
that t1,3 = (p1x2)(p2x3) = t1,2t2,3. This is not a coincidence, as in two dimensions budgets can be sorted by
their price ratio. If budgets are sorted and B1 and BN have the lowest and highest price ratio, respectively, then
t1,N = (p1x2)(p2x3)⋯(pN−1xN), as was shown in Heufer (2013b).

x1

x2

x3

t2,3x2

x1

x2

B1

B2

B3

(a)

x1

x2

x3

t1,3x1

x1

x2

(b)

Figure 1: Illustration of the scalar factors.

Knoblauch (1993) also shows how to recover homothetic preferences implicit in a set of observations
which satisfies Harp. Define the set of bundles which are homothetically revealed preferred to x♢ as

HRP(x♢) = intCMH (x♢ ∪ N⋃
i=0

ti ,♢xi) . (16)

The set HRP(x♢) is very useful indeed, as Theorem 3 below shows that it describes the set of bundles which
any rationalising homothetic utility function must rank higher than x0. Define the set of bundles which are
homothetically revealed worse to x♢ as

HRW(x♢) = {x ∈ RL
+ ∶ x♢ ∈ HRP(x)}. (17)

As HRP can be easily computed as the convex hull of a finite number of points, it is also easy to test for any
bundle if x ∈ HRW(x♢).
Theorem 3 (Knoblauch 1993) Suppose Ω satisfies Harp. The following conditions are equivalent:

1. x ∈ HRP(x♢);
2. every homothetic u ∈U which rationalises Ω satisfies u(x) > u(x♢).
See Knoblauch (1993) for the proof. The following corollary is then straightforward, and we omit the proof.

Corollary 1 Suppose Ω satisfies Harp. The following conditions are equivalent:
1. x ∈ HRW(x♢);
2. every homothetic u ∈U which rationalises Ω satisfies u(x♢) > u(x).
It should also be obvious that RP(x♢) ⊆ HRP(x♢) and RW(x♢) ⊆ HRW(x♢) for all x♢.
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3 homothetic efficiency

3.1 A Lower Bound on Homothetic Efficiency and Recoverability

3.1.1 Homothetic Afriat Efficiency Index

Suppose we have a set Ω = {(xi , pi)}2i=1. If the consumer had homothetic preferences, then his demand when
facing budget B(p1, t) would be t x1. Then the smallest t for which t x1 would be revealed preferred to x2 is
t = p1x2. Now suppose Ω does not satisfy Harp such that (p1x2)(p2x1) < 1. Then the choice (p1x2)x1 on
B(p1, p1x2)would be revealed preferred to x2, but as Harp is violated, p2x2 = 1 > [p2(p1x2)x1] = (p1x2)(p2x1),
that is, x2 is strictly revealed preferred to (p1x2)x1, which would violate Garp. But if we relax Garp, as is
done to compute the Aei, we can find the greatest e ∈ (0, 1] such that e p2x2 = e ≤ [p2(p1x2)x1], that is,
e = (p1x2)(p2x1). This e has a similar economic interpretation as the Aei: If the preferences of the consumer
were homothetic but demand is specified with errors, then e can be interpreted as a level of expenditure which
the consumer wasted due to the errors; in particular, he could have obtained the same utility as he obtained
from choosing x2 at an expenditure e < 1 rather than the actual expenditure of 1.

However, if we use this approach, the multiplication of the scalars pix j can lead to very low values of e. For
example, in the experiment conducted by Fisman et al. (2007), subjects were asked to choose bundles from fifty
budgets. They were not required to spend their entire wealth, which lead to some minor violations of budget
balancedness. If the choices are evaluated by taking the difference between pixi and w i into account, then
repeated multiplication can distort the result. To illustrate the general problem with a hypothetical scenario,
suppose that a subject is asked to make ten choices from the same budget set. Suppose we observe xi = x j
for all i , j = 1, . . . ,N , with pi = p j for all i , j = 1, . . . ,N as well. Suppose that pixi = .95, but w i = 1. Then
(p1x2)(p2x3)⋯(p10x1) ≈ 0.5987, even though only five percent of the wealth level was wasted each time and
even though the data would satisfy Harp if the w i were set to .95. But even without violations of budget
balancedness and with different budgets, minor errors can lead to very low values of e if many choices are
observed.

We therefore suggest to use the following axiom, called Harp(e), which takes into account the number of
scalars which are multiplied.

Axiom A set of observations Ω satisfies Harp(e) for some e ∈ (0, 1] if for all distinct choices of indices
i , j, k, . . . , ℓ, it holds that

(pix j
e
)(p jxk

e
)⋯(pℓxi

e
) ≥ 1.

Figure 2 illustrates the idea. Figure 2.(a) shows the two observations. The dashed line shows the boundary
of the shifted budget B1 which contains x2. The intersection of the dashed line and the ray through the origin
and x1, shown as λx1, gives the demand on the shifted budget if preferences were homothetic. Here λ is chosen
to equal p1x2; note that, byTheorem 3, λx1 would be homothetically revealed preferred to x2 if preferences
were homothetic. But as λx1 is in the interior of budget B2, x2 is strictly revealed preferred to λx1, thus Harp is
violated. Also note that there is a μ < 1 such that μx2 would be homothetically revealed preferred to λx1. Then
λ̃x1 with λ̃ < λ would be homothetically revealed preferred to μx2. This process can be repeated ad infinitum.

Figure 2.(b) shows the two budgets shifted downwards by setting the wealth level to e < 1. Figure 2.(c)
shows that if x1 is scaled upwards by a factor equal to λ/e, we find that while x2 is still strictly revealed preferred
to it — x2 P0 (λx1/e)— it is not strictly revealed preferred at efficiency level e — [not x2 P0(e) (λx1/e)]. This
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is indeed the smallest e for which Harp(e) is satisfied; as the example has only two observations, this e can be
found by setting [(p1x2)/e][(p2x1)/e] = 1 and solving for e.

x1

x2

B1

B2
λx1

x1

x2

(a)

B(p1 , e)
B(p2 , e)

x1

x2

(b)

λx1
e

ex2

x1

x2

(c)

Figure 2: An illustration of Harp(e) and the homothetic efficiency index. The example uses x1 = (2, 4), p1 = (1/10, 1/5), x2 = (8, 4),
and p2 = (1/10, 1/20). The greatest e for which Harp(e) is satisfied is 4/5.

Given Harp(e), we propose the following definition, in analogy to the Aei:

Definition For a set of observations Ω, theHomothetic Efficiency Index (Hei) is the greatest e ∈ (0, 1] such
that Ω satisfies Harp(e).

The Hei can be computed using the same binary search algorithm used for calculating the Aei. It can be
reported as a summary statistic. The next theorem will provide a good motivation and justification to compute
and report e. It is based on a concept we call e-rationalisation, which is in the same spirit as the definitions
proposed and analysed by Halevy et al. (2012).

Definition A utility function u ∈U e-rationalises a set of observationsΩ if u(xi) ≥ u(y) whenever xi R0(e) y.
For e close to 1, a utility function which e-rationalises a set of data still adequately explain choices as the

result of utility maximisation with minor errors. The following theorem shows that Harp(e) is necessary and
sufficient for homothetic e-rationalisation.

Theorem 4 For any e ∈ [0, 1] the following conditions are equivalent:
1. the set of observations Ω satisfies Harp(e);
2. there exist numbers U i > 0 such that

e U i ≤ U jp jxi (18)

for i , j = 1, . . . ,N;
3. there exists a homothetic u ∈U which e-rationalises the set of observations Ω.

As discussed above, one alternative is to compute Hei from Harp(e) using a simple binary search
algorithm; another alternative is to set up a linear programming problem based on Eq. (18) to calculate the
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maximal e. Since e U i > 0 we can (log-)linearise Eq. (18) to get

є + ui − u j ≤ log(p jxi), (19)

for all i , j = 1, . . . ,N , where ui = log(U i), u j = log(U j) and є = log(e). The maximal efficiency index can
then be computed as (with respect to є ∈ (−∞, 0] and ui ∈ (−∞,∞) for all i = 1, . . . ,N):

max є subject to (19). (20)

This is a linear programme and can therefore be solved in polynomial time. In section 3.2.1 we discuss the
properties of this problem in more detail and provide a motivation for its use in applied work.

3.1.2 Recoverability with Homothetic Efficiency

Homothetic recoverability with data adjusted by efficiency indices is not as straightforward in the standard
case described in Section 2.3. It is not sufficient to divide the scalar factors ti ,♢ in Eq. (15) by e, or to divide
each component in Eq. (15) by e to find new scalar factors. Figure 2.(c) already illustrates this: With only
two observations, we would have t1,2 = p1x2 if the data satisfied Harp. But here, λ = p1x2, and clearly, x2

is still revealed preferred to λx1/e. We need to scale down x1 by e as well to remove this contradiction, so
λx1/e is only homothetically revealed preferred to ex2. Alternatively, λx1/e2 would be homothetically revealed
preferred to x2 because p2(λx1/e2) = 1.

Let ê be the Hei of a set of observations Ω. Define

t̂i,♢ =min{(pix j
ê2
)(p jxk

ê2
)⋯(pℓx♢

ê2
)} , (21)

where the minimum is over all finite sequences i , j, . . . , ℓ between 1 and N inclusive. We say that t̂i ,♢xi is
homothetically revealed preferred at efficiency level ê to x♢, written t̂i,♢xi Ĥ x♢. To motivate this definition and
show that it is useful, we first need to define the set of bundles which are homothetically revealed preferred at
efficiency level ê to x♢ as

ĤRPê(x♢) = intCMH (x♢ ∪ N⋃
i=1

t̂i ,♢xi) , (22)

and the worse set as

ĤRW ê(x♢) = {x ∈ RL
+ ∶ x♢ ∈ ĤRPê(x)}. (23)

Figure 3.(a) shows an example of the sets ĤRPê(x0) and ĤRW ê(x0) (hatched area) based on the Hei,
together with the standard sets RP(x0) and RW(x0) from Section 2.3. Figure 3.(b) shows the boundary of the
set ĤRP(ê) for the two observations and two bundles in between.

Ideally, ĤRP is an extension of RP, that is, RP(x0) ⊆ HRPe(x0), and the same for ĤRW and RW. We could
then claim that ĤRP was faithful to the revealed preference relation and recovers additional information about
a consumer’s preference based on the assumption that preferences are indeed homothetic, but homotheticity
was accidentally violated. However, this is not always the case, as a simple example demonstrates. Suppose
x1 = (2, 4), x2 = (5, 5), x3 = (8, 4), p1 = (1/10, 1/5), p2 = (1/10, 1/10), and p3 = (1/10, 1/20). Homotheticity is
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violated, and the Hei is 4/5. We then find that t̂3,2 ≈ 1.172, and therefore t̂3,2x3 > x3. But x3 R0 x2, so RP(x2)
contains x3, but ĤRP(x2) does not.

This problem becomes smaller as ê gets closer to 1, but we still recommend to use the Hei mostly as a
summary statistic. The reason is that there is a better way to adjust data for violations of homotheticity as we
will show in the next section, which leads to superior versions of ĤRP and ĤRW for applications. However,
the next theorem does provide the motivation for using the sets ĤRP and ĤRW.

While Theorem 4 provides the motivation to report the Hei as a summary statistic, Theorem 5 below
justifies the use of ĤRP and ĤRW. It shows that every homothetic utility function which e-rationalises the
data will agree with our construction of the homothetically revealed preferred and worse sets.

Theorem 5 If Ω satisfies Harp(e), then for every homothetic u ∈U which e-rationalises Ω,

ĤRPê(x♢) ⊆ {x ∈ RL
+ ∶ u(x) ≥ u(x♢)} ,

ĤRWê(x♢) ⊆ {x ∈ RL
+ ∶ u(x) ≤ u(x♢)} .

3.2 Improved Homothetic Efficiency Vector and Recoverability

3.2.1 Definition and Computation

Similar to the case of the Aei and Varian’s (1993) improved violation index, the Hei is only a lower bound on
homothetic efficiency. A homothetic efficiency vector which provides information about howmuch each budget
has to be perturbed to achieve a meaningful kind of consistency while keeping the perturbations minimal
would be informative and useful for applied work. We suggest the following straightforward generalisation of
Harp(e).
Axiom A set of observations Ω satisfies Harp(h) for some h = (h1, . . . , hN) ∈ (0, 1]N if for all i , j = 1, . . . ,N,
it holds that

(pix j
hi
)(p jxk

h j
)⋯(pℓxi

hℓ
) ≥ 1.

The problem with computing a vector h with maximal values is that “breaking cycles” is not as easy as in
the standard case in Varian (1993). It is not feasible to consider breaking “homothetically revealed preference
cycles”. If a set of data does not satisfy Harp, then Knoblauch’s (1993) concept of “homothetically revealed
preferred to” is either ill defined or computationally infeasible for many observations. If in the definition of the
scalar factors in Eq. (15) we allow for multiple occurrences of indices, then the minimum is not defined and
the infimum is 0. For example, if (p1x2)(p2x1) < 1, then limn→∞[(p1x2)(p2x1)]n = 0. If we restrict Eq. (15)
to distinct vertices, then the problem of computing the scalars amounts to the NP-hard problem of finding
a simple shortest path in a weighted complete graph (i.e., a path that visits each vertex at most once, except
for the first vertex if the path is a cycle). The complexity of this endeavour quickly approaches a level which
makes computation infeasible.9

9In a complete graph with N ≥ 2 vertices, there are∑N
i=2

(N−2)!
(N−i)! different simple paths between two distinct vertices. For the

50 observations per subject collected in Fisman et al. (2007) and Choi et al. (2007a), this would require to compare 3.37445 ⋅ 1061
different paths.
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We will therefore rely on a linear programming approach. The basis for this approach will be provided by
a theorem which is the analogue of Theorem 4 (the proof is practically the same as for Theorem 4 and we omit
it.)

Definition Autility function u ∈U h-rationalises a set of observationsΩ if u(xi) ≥ u(y)whenever xi R0(hi) y.
Theorem 6 For any h = (h1, . . . , hN) ∈ [0, 1]N the following conditions are equivalent:

1. the set of observations Ω satisfies Harp(h);
2. there exist numbers U i > 0 such that:

h jU i ≤ U jp jxi (24)

for i , j = 1, . . . ,N;
3. there exists a homothetic u ∈U which h-rationalises the set of observations Ω.

We say that h̃ is aHomothetic Efficiency Vector (Hev) for Ω if Ω satisfies Harp(h̃) and there does not exist
a h′ ≥ h̃ such that Ω satisfies Harp(h′).

As discussed above, calculating Hev can be computationally difficult. For example, computing the Hev as
close as possible to the unit vector in the Minkowski distance norm amounts to solving the following problem:

max( N∑
i=1
(hi − 1)φ)

1/φ

such that either Harp(h) or Eq. (24) holds. (25)

Although this problem is NP-hard for any φ ≥ 1, it is no longer NP-hard for φ = 0, in which case the objective
function reduces to limφ→0(∑(hi − 1)φ)1/φ = ∏ hi . Thus, the problem:

max
N∏
i=1

hi such that either Harp(h) or Eq. (24) holds, (26)

can be solved in polynomial time. To understand why, simply note that the problem is invariant to any strictly
monotonic transformation of the objective function. Thus, by a log-transform we can replace the objective
function in (26) with∑N

i=1 κi , where κi = log(hi). This results in the linear programme (solved with respect to
κi ∈ (−∞, 0] and ui ∈ (−∞,∞) for all i = 1, . . . ,N):

max
N∑
i=1

κi subject to κ j + ui − u j ≤ log(p jxi), (27)

for i , j = 1, . . . ,N , with ui = log(U i) and where the constraints in (27) are log-linearisations of the inequalities
in Eq. (24). This programme can be solved using elementary linear programming techniques, and consequently
in polynomial time.

Although strictly speaking, the problem (27) does not compute the set of indices closest to the unit vector in
a ’true’ norm (since the Minkowski metric with φ = 0 does not technically satisfy all requirements for a norm),
it is a commonly used procedure in practice to find maximal elements in constrained optimisation problems.
However, it can be shown that the indices calculated from the problem (27) are first order approximations of the
indices calculated under φ = 1 in the general problem (25). Indeed, a first order Taylor approximation of log(h)
about the point 1 yields log(h) ≃ (h − 1). Thus, the objective function (27) satisfies∑N

i=1 κi = ∑N
i=1 log(hi) ≃∑N

i=1(hi − 1), where the right-hand side then corresponds to (25) evaluated in φ = 1.
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3.2.2 Recoverability with Improved Homothetic Efficiency

As in Section 3.1.2, we can define scalar factors for homothetically revealed preferred relations. Based on that,
we can again construct homothetically revealed preferred and worse sets.

Let h̃ be an Hev of a set of observations Ω. Define

t̃i,m =min
⎧⎪⎪⎨⎪⎪⎩(

pix j

h2i
)⎛⎝

p jxk

h2j

⎞
⎠⋯(

pℓxm

h2ℓ
)⎫⎪⎪⎬⎪⎪⎭ , (28)

where the minimum is over all finite sequences i , j, . . . , ℓ between 1 and N inclusive. Again, we say that t̃i ,♢xi

is homothetically revealed preferred at efficiency level hi to x♢, written t̂i ,♢xi H̃ x♢. Define

H̃RPh̃(x♢) = intCMH (x♢ ∪ N⋃
i=1

t̃i ,♢xi) , (29)

and

H̃RWh̃(x♢) = {x ∈ RL
+ ∶ x♢ ∈ H̃RPh̃(x)}. (30)

Figure 3.(c) shows an example of the sets H̃RPh̃(x0) and H̃RWh̃(x0) based on an Hev with h̃ = (1, 16/25).
This h̃maximises the sum of h1 and h2, that is, there is no Hev h′ with h′ ≥ h̃ such that h′1 + h′2 > 1 + 16/25.
Figure 3.(d) shows same for an alternative Hev which maximises h1h2.

The next theorem motivates these definitions (again the proof of Theorem 7 is practically the same as for
Theorem 5 and we omit it).

Theorem 7 If Ω satisfies Harp(h), then for every homothetic u ∈U which e-rationalises Ω,

H̃RPh̃(x♢) ⊆ {x ∈ RL
+ ∶ u(x) ≥ u(x♢)} ,

H̃RWh̃(x♢) ⊆ {x ∈ RL
+ ∶ u(x) ≤ u(x♢)} .

4 applications

In this section, we apply our methods to one experimental data set and one survey data set. Our aim with
this empirical exercise is threefold: first, we want to show that our methods can recover detailed information
about subjects’ preferences in experimental data sets. Second, we want to show that homothetic efficiency can
be high for consumer choice data. Finally, we want to show that data which is adjusted by Hev (Hei) can have
much more discriminatory power against irrational behaviour than Vev (Aei) adjusted data.

4.1 Test Power and Conditional Test Power

The standard approach to calculate the power for revealed preference tests is based on Bronars’ (1987). In this
paper, we followBronars’ approach and generatemany random choice sets uniformly distributed on the budgets
and compute the fraction of sets that either violates Garp or Harp. We refer to the fraction of generated data
sets violating Garp and Harp as the power of Garp and Harp, respectively. Moreover, to analyse the loss in
power for income adjusted data, we employ the following three-step procedure: (i) we compute efficiency
indices from the observed data; (ii) then we generate random data sets using Bronars’ approach, and (iii)
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Figure 3: (a) (Homothetically) revealed preferred and worse sets for x0 = (x1 + x2)/2 with the same data as in Figure , based on
ê = 4/5. The hatched area shows ĤRP and ĤRW, the filled area RP and RW. (b) The boundary of ĤRP for x1 , x2, and two bundles in
between, again with ê = 4/5. (c) H̃RP and H̃RW based on a Hev with h̃ = (1, 16/25) which maximises h1 + h2 and h1h2. (d) H̃RP
and H̃RW based on an Hev with h̃ = (256/325, 13/16) which also maximises h1h2 but not h1 + h2.
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finally, we calculate the fraction of sets violating either Garp or Harp where total expenditure (income) is
adjusted for efficiency; that is, in this final step, we deflate expenditure by the efficiency index computed in the
first step when running Garp and Harp. Repeating the three-step procedure for all four efficiency indices
Aei, Vev, Hei, and Hev allows us to compare the loss in discriminatory power across the indices.

A potential issue with calculating the power for Harp is that Garp is a necessary condition for Harp,
and Hei can never exceed Aei. It would therefore be interesting to know the probability that a set of random
choices which happens to satisfy Garp also satisfies Harp, or that such a set has at least the same Hei. This
would provide the homotheticity test power conditional on Garp being satisfied. Heufer (2013a) provides
an efficient method to generate sets of random choices which satisfy Garp. We can then test these sets for
Harp which we refer to as the conditional test power. We do this for the data analysed below.

4.2 Experimental Data: Preferences for Giving

Fisman et al. (2007, FKM) analyse data obtained in a laboratory experiment. They employ the same setup
as Andreoni and Miller (2002, AM), that is, a generalised dictator game in which one subject (the dictator)
allocates token endowments between himself and an anonymous other subject with different transfer rates.
The payoffs of the dictator and the beneficiary are interpreted as two distinct goods, and the transfer rates
as the price ratio. In both papers, the authors estimate a CES utility function, so they implicitly maintain
the hypothesis that choices are homothetic. Testing how “close” the choices are to homotheticity is therefore
important and should be conducted at least as a pretest to screen out particularly inefficient choices.

A simple two-dimensional version of homothetic efficiency has been computed for both the FKM and the
AM data by Heufer (2013b). We only focus on the FKM data here, as they contain 50 choices per subject as
opposed to 8 in the AM data. This also allows for an informative graphical analysis based on the sets H̃RP and
H̃RW.

We start our analysis by calculating Aei, Hei, Vev and Hev for all subjects.10 These results are presented in
Table 1, where the two first rows report the mean and minimum, the first, second (median) and third quantiles
and the maximum of Aei and Hei calculated across all 76 subjects. As expected, we find that Aei is noticably
higher than Hei for most subjects. However, as discussed above, Aei and Hei are summary statistics, and
may therefore be uninformative in describing the entire distribution of the indices. In fact, looking at the
third and fourth rows of Table 1, which report summary statistics for Vev and Hev, gives a different picture.
These results show that homothetic efficiency is in fact close to utility maximisation efficiency.11 Specifically,
Hev displays the same pattern as Vev: both indices are characterised by one or a few observations with lower
efficiency values, while the remaining values in the vector are very close to one.

Table 2 report summary statistics for the unconditional power calculations. We present the power of
Garp and Harp for different configurations, depending on how we adjust total expenditure when applying
these tests (see the second column). The results from the last two rows show that Garp and Harp have optimal
power even when total expenditure is deflated by Vev and Hev, respectively. Thus, Garp and Harp have high
discriminatory power even for income-adjusted random data. However, as seen from the third and fourth row,
this is not always the case when deflating expenditure by Aei and Hei. Specifically, the loss in power can be

10For each subject, Hei and Hev are computed by solving problems (20) and (27), respectively. To aid comparisons with Aei and
Vev we calculate these indices from a slight modification of problem (8). Specifically, we transform the problem so that the indices
are computed in the L0-norm by log-linearising the constraints (mip.i)-(mip.vi) and then maximize∑N

i=1 νi where νi = log(vi). We
also computed Aei and Vev by solving the problem (8). Interestingly, computing the indices in the L0 and L1 norms gave practically
identical solutions. This suggests that the L0-problem is a very good approximation to the L1-problem (See the discussion in Section
3.2.1.

11The entries in rows 3 and 4 are averages across all subjects. For example, to obtain the entry minimum we first computed
min{v1 , . . . , vN} and min{h1 , . . . , hN} for each subject and then calculated the mean of these values over all subjects.
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efficiency

Index mean min 1st quantile median 3rd quantile max

Aei 0.9407 0.5308 0.9173 0.9775 0.9972 1.0000
Hei 0.8821 0.4438 0.8118 0.9210 0.9786 1.0000
Vev 0.9959 0.9350 0.9982 1.0000 1.0000 1.0000
Hev 0.9788 0.8274 0.9742 0.9919 0.9986 1.0000

Table 1: Efficiency indices (FKM).

rather considerable for some subjects as revealed by the fourth column in rows 3 and 4. Finally, Table 3 reports
the conditional power results. We find that Harp has optimal power against uniformly random data which
satisfies Garp. Next, we go on to show how our methods can recover detailed information about subjects’
preferences.

unconditional power

Axiom Income deflated mean min 1st quantile median 3rd quantile max

Garp No 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Harp No 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Garp Aei 0.9759 0.2520 1.0000 1.0000 1.0000 1.0000
Harp Hei 0.9810 0.3720 1.0000 1.0000 1.0000 1.0000

Garp Vev 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Harp Hev 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2: Unconditional power for Garp and Harp (FKM).

conditional power

Axiom mean min 1st quantile median 3rd quantile max

Harp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3: Conditional power for Harp (FKM).

Figure 4 shows examples of subjects who reveal almost prototypical preferences. The differences between
the homothetically revealed preferred and worse sets and the regular revealed preferred and worse sets
demonstrate how much more we can learn about subjects’ preferences when deviations from homotheticity
are minor. The examples also illustrate that the theoretical problem of disagreements between RP and HRP
described in Section 3.1.2 is unlikely to occur for large sets of real data.

We also provide an interactive application prepared with Wolfram Mathematica® that allows users to
analyse the data graphically and create figures as the ones in Figure 4 for arbitrary subjects and bundles. This
software is available on one of the authors’ websites and can be run with the free Wolfram CDF Player.12

12The CDF file is available at https://sites.google.com/site/janheufer/HomotheticRecoverability.cdf. To run
the file, the free Wolfram CDF Player can be obtained at http://www.wolfram.com/cdf-player/.
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Figure 4:The dashed area shows H̃RP and H̃RW, the filled area shows RP and RW. (a) Subject 18: Weak perfect substitute preferences.
(b) Subject 26: Weak Nash preferences. (c) Subject 25: Weak Rawlsian preferences. (d) Subject 19: Selfish preferences.
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4.3 Survey Data: Household Expenditures

We now illustrate our methods using data from the Spanish Continuous Family Expenditure Survey (Encuesta
Continua de Presupuestos Familiares, abbreviated ECPF).13 This panel is a quarterly budget survey, ranging
from 1985-1997, that interviews Spanish households for up to a maximum of eight consecutive quarters on their
consumption expenditures.14 From this data, we use a sub-sample of couples with and without children, where
the husband is employed full-time and the wife is outside the labor force.15 Moreover, we exclude durable
goods and focus exclusively on consumption expenditures on non-durable consumption categories.16 Overall,
the data we use contains 21,866 observations on 3,134 Spanish households.

Table 4 reports summary statistics for the calculated efficiency indices across all households. As seen from
this table, homothetic efficiency is very close to utility maximisation efficiency. For example, the mean across
all observations and households of Hev is 0.9960 (compared to Vev which is 1.0000). Thus, the consumption
choices of the households’ seem to be very well explained by homothetic preferences.

efficiency

Index mean min 1st quantile median 3rd quantile max

Aei 0.9998 0.9698 1.0000 1.0000 1.0000 1.0000
Hei 0.9917 0.9518 0.9890 0.9936 0.9965 1.0000
Vev 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000
Hev 0.9960 0.9865 0.9936 0.9978 0.9996 1.0000

Table 4: Efficiency indices (ECPF).

Table 5 report results from the power analysis. As discussed in the Introduction, allowing for errors in
revealed preference tests often leads to a loss in power, which may render the analysis practically meaningless.
This concern is clearly warranted from Table 5. Specifically, standard utility maximisation (see rows 1,3 and
5) has barely any power against uniformly random behaviour, which means that Garp is unable to reject
irrational consumption behaviour. On the other hand, since Harp is a stronger condition, we expect it to
have more power against irrational behaviour. As seen from rows 2, 4 and 6, Harp has substantially more
power against uniformly random behaviour than Garp. In fact, while the average power across households
never exceeds 9 percent for Garp, the power of Harp is above 90 percent for all but a few households (for
non-deflated total expenditure and expenditure deflated by Hev).

The current analysis also allow us to analyse the potential loss in power of adjusting expenditure by
efficiency in revealed preference tests. Consider once again rows 2, 4 and 6 in Table 5. We see that while the
power loss can be considerable when deflating expenditure by Hei (row 4) the loss is negligible when adjusting
expenditure by Hev (row 6). In other words, adjusting expenditure by Hev have small effects on the power,
which rather forcefully addresses the concern that adjusting expenditure by efficiency in revealed preference
testing renders the analysis meaningless. Finally, Table 6 reports the conditional power results. We find that
Harp has very good power against uniformly random data which satisfies Garp.

13See Browning and Collado (2001) and Crawford (2010) for a detailed discussion of this data set.
14Households are randomly rotated at a rate of 12.5 percent per quarter.
15We focus on this sample to minimise the effects of non-separabilities between consumption and leisure.
16The non-durables are aggregated into the following 15 consumption categories: (i) food and non-alcoholic drinks at home,

(ii) alcohol, (iii) tobacco, (iv) energy at home, (v) services at home, (vi) non-durables at home, (vii) non-durable medicines, (viii)
medical services, (ix) transportation, (x) petrol, (xi) leisure, (xi) personal services, (xii) personal non-durs, (xiii) restaurants and bars,
and (xiv) travelling.
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unconditional power

Axiom Income deflated mean min 1st quantile median 3rd quantile max

Garp No 0.0892 0.0000 0.0000 0.0280 0.1700 0.7080
Harp No 0.9974 0.9700 0.9980 1.0000 1.0000 1.0000

Garp Aei 0.0859 0.0000 0.0000 0.0260 0.1640 0.6480
Harp Hei 0.6382 0.0000 0.3760 0.7400 0.9280 1.0000

Garp Vev 0.0877 0.0000 0.0000 0.0260 0.1680 0.6760
Harp Hev 0.9558 0.1300 0.9480 0.9840 0.9960 1.0000

Table 5: Unconditional power for Garp and Harp (ECPF).

conditional power

Axiom mean min 1st quantile median 3rd quantile max

Harp 0.9776 0.7400 0.9800 0.9900 1.0000 1.0000

Table 6: Conditional power for Harp (ECPF).

5 conclusion

Consumer choice data often violates homothetic utility maximisation. In such cases, it would be interesting
to know how close the data comes to homothetic utility maximisation. For this purpose, we introduced a
non-parametric approach to estimating homothetic efficiency of demand data by generalising Heufer’s (2013b)
method. We introduced the Homothetic Efficiency Index (Hei) and the Homothetic Efficiency Vector (Hev)
in analogy to the standard Afriat Efficiency Index (Aei) and Varian’s improved violation index or Varian
Efficiency Vector (Vev). As the Aei, the Hei can be interpreted as a measure of wasted income under the
assumption that violations of homotheticity were due to errors in decision making. As a non-parametric
approach, our method does not rely on any specific form of a utility function.

Both the Hei and the Hev can be used to adjust data by deflating expenditure to reconstruct bounds on
preferred and worse sets. This is motivated by a concept called e- and h-rationalisation which is similar to a
concept used recently by Halevy et al. (2012): For efficiency close to 100%, there still exists a utility function
that adequately explains the data as the result of homothetic utility maximisation with minor errors.

We applied the method to two data sets. This empirical analysis illustrates how recoverability based on
adjusted homothetically revealed preferred relations allows a detailed analysis of preferences at the individual
level. It also demonstrates how a data set that has very low power against the alternative hypothesis of random
behaviour can still be useful when testing for the stronger condition of homothetic utility maximisation. We
find that efficiency can be very high for homotheticy, that tests for Harp have far greater power than tests for
Garp, and that adjusting choices by efficiency measures has negligible effects on test power.

We expect that our results help in analysing experimental, survery, and field data. It will help to test the
assumption of homotheticity before estimating homothetic utility functions, to quantify the extent of the
violation of homotheticity, to analyse preferences in detail without the need of estimating parameters, and
to increase test power for data sets which have too litle power against the alternative hypothesis of random
behaviour.

The approach could easily be translated to production analysis. As homotheticity of production is assumed
in many applications, a non-parametric test that provides a measure for homothetic efficiency independent of
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a specific production function should at the very least be a useful screening device and robustness check before
parameters of a homothetic production function are estimated. Non-parametric recoverability of technological
information as suggested by Varian (1984a) could also be carried out in analogy to the recoverability of
preferences in our paper.

a appendix

a.1 Proofs

a.1.1 Proof of Theorem 4

Proof For (1)⇒ (2) and (3)⇒ (1), Varian’s (1983) proof can be applied with minor obvious adjustments. We
will prove (2)⇒ (3).

As in Varian (1983), define U(x) = mini{U ipix}. It can be easily verified that U ∈ U and that U is
homothetic; what remains to be shown is that U e-rationalises Ω. Suppose Ω satisfies Harp(e) and there
exists x such that U(x) ≥ U(xi) and xi P0(e) x. Then e pixi = e > pix. By continuity and monotonicity of
U , there then exists y > x such that piy = e and U(y) > U(x). By Harp(e), eU i ≤min j{U jp jxi}, and with
piy = e we obtain piyU i ≤min j{U jp jxi}. Suppose U(xi) = U kpkxi ; then piyU i ≤ U kpkxi = U(xi) ≤ U(x).
But U(y) = min j{U jp jy}, so U(y) ≤ U ipiy. Then U(y) ≤ U(xi) ≤ U(x), but y > x, which contradicts
montonicity.

Suppose instead that there exists x such that U(x) > U(xi), and xi R0(e) x but not xi P0(e) x. Then
pix = e, and we obtain U(x) ≤ U(xi) ≤ U(x), which implies U(x) = U(xi), a contradiction. Thus, U
e-rationalises Ω.

a.1.2 Proof of Theorem 5

Proof By induction. Suppose u ∈U is homothetic and e-rationalises the data. By definition, we can assume
without loss of generality that u is homogenous of degree 1. Because u is concave, we only need to consider
the vertices of the closure of ĤRPê , that is, we only need to check if u(t̂i ,♢xi) < u(x♢) is possible.
Step 1 By homogeneity of degree 1, u([pix♢/e2]xi) = [pix♢/e2]u(xi). Let y = e/[pix♢]x♢; then piy = e,
and therefore xi R0(e) y. Suppose u(t̂i ,♢xi) < u(x♢). Then u(xi) < (e2/[pix♢])u(x♢). But with e ≤ 1,
(e2/[pix♢])u(x♢) ≤ (e/[pix♢])u(x♢) = u(y). Then u(xi) < u(y), but xi R0(e) x♢, so u cannot e-rationalise
Ω. Thus, ([pix♢]/e2)u(xi) ≥ u(x♢).
Step 2 Assume without loss of generality that

t̂1,n = p1x2

e2
p2x3

e2
. . . p

n−1xn

e2

and that t̂1,♢ = t̂1,n[pnx♢]/e2. Suppose t̂1,nu(x1) ≥ u(xn). Then

t̂1,♢u(x1) = t̂1,nu(x1)pnx♢e2
≥ u(xn)pnx♢

e2
≥ u(x0),

where the last inequality follows from Step 1. Thus, t̂1,♢u(x1) ≥ u(x♢).
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By induction, Steps 1 and 2 show that u(t̂i ,♢xi) ≥ u(x♢) for all i and all homothetic u ∈ U which e-
rationalise Ω. That concludes the proof for ĤRP. The second subset then follows from the definition of ĤRW ê .
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