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The StoNED age: The Departure Into a New 

Era of Effi  ciency Analysis? – A Monte Carlo 

Comparison of StoNED and the “Oldies” 

(SFA and DEA)

Abstract

Based on the seminal paper of Farrell (1957), researchers have developed several 
methods for measuring effi  ciency. Nowadays, the most prominent representatives are 
nonparametric data envelopment analysis (DEA) and parametric stochastic frontier 
analysis (SFA), both introduced in the late 1970s. Researchers have been attempting to 
develop a method which combines the virtues – both nonparametric and stochastic – of 
these “oldies”. The recently introduced Stochastic non-smooth envelopment of data 
(StoNED) by Kuosmanen and Kortelainen (2010) is such a promising method. This paper 
compares the StoNED method with the two “oldies” DEA and SFA and extends the initial 
Monte Carlo simulation of Kuosmanen and Kortelainen (2010) in several directions. 
We show, among others, that, in scenarios without noise, the rivalry is still between 
the “oldies”, while in noisy scenarios, the nonparametric StoNED PL now constitutes a 
promising alternative to the SFA ML.
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1 Introduction

In his classic paper, Farrell (1957) stated that measuring the efficiency of productivity is im-
portant to economic theorists and economic policy makers alike. Based on Farrell’s work,
researchers have developed several methods for measuring efficiency. Despite this progress, af-
ter more than five decades of efficiency analysis research, there is still no single superior method
(see, among others, Resti (2000), Mortimer (2002) and Badunenko et al (2011)).

The efficiency analysis literature can be divided into two main branches of parametric and
nonparametric methods. Data envelopment analysis (DEA) is the most popular representative
of the nonparametric methods. It is a linear programming method which constructs a non-
parametric envelopment frontier over the data points. Despite the fact that previous papers
also proposed mathematical programming methods (see, for example, Afriat (1972)), DEA is
generally attributed to Charnes et al (1978). DEA estimates efficiency without considering
statistical noise and is thus a deterministic method. This is its main disadvantage. On the
other hand, its main advantage is flexibility, due to its nonparametric nature.

In contrast, parametric methods require an assumption about the functional form of the pro-
duction function. The corrected ordinary least squares method (COLS), originally proposed by
Winsten (1957), estimates the efficient frontier by shifting the ordinary least squares regression
towards the most efficient producer. Subsequently, it measures inefficiency as the distance to
this frontier. COLS has the same disadvantage as DEA, since it is also deterministic. Aigner
et al (1977) and Meeusen and van den Broeck (1977) developed a stochastic parametric model,
called stochastic frontier analysis (SFA). Its main advantage is its ability to measure efficiency
while simultaneously considering the presence of statistical noise.

The methodological differences and corresponding strengths and weaknesses lead to DEA and
SFA being the two most popular economic approaches for measuring efficiency. However, in
real-world applications, the problem arises that it is unknown which set of assumptions is
closer to reality and the methods yield different efficiency scores. Hence, both in the literature
as well as in practical application, it is desirable to find a way to combine the advantages of
the two methods. Among others, Banker et al (1994) state that the “...use of more than one
methodology can help to avoid the possible occurrence of ‘methodological bias’...”. In practical
application, one common approach is to combine SFA and DEA by using, for example, the
mean value of the estimates yielded by the two methods. For instance, Haney and Pollitt (2009)
conclude that the combination approach is “best-practice” in energy regulation. Therefore, in
Andor and Hesse (2011), we analyzed SFA and DEA, and applied combination approaches
within a MC simulation, in order to evaluate the performance. Under our assumptions, the
results confirm weakly that the mean performs better than the elementary results of DEA
and SFA. Nevertheless, this approach is ad-hoc and lacks a theoretical foundation, raising the
question of whether any theoretical method effectively combines the virtues of DEA and SFA.

In the efficiency analysis literature, there are ongoing attempts to develop this kind of method
(cf., among others, Fan et al (1996), Kneip and Simar (1996), Kumbhakar et al (2007)). The
Stochastic non-smooth envelopment of data (StoNED) method, recently introduced by Kuos-
manen and Kortelainen (2010), is a promising candidate, as it is stochastic and semi-parametric,
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requiring no a priori explicit assumption about the functional form of the production function.

The aim of this present article is to evaluate the performance of StoNED in comparison to the
“oldies” – DEA and SFA – within a Monte Carlo Simulation (MC). MC studies are widely
used to evaluate efficiency estimation methods (see, for example, Gong and Sickles (1992),
Banker et al (1993) and Resti (2000)). They enable researchers to reveal factors influencing the
performance of the various methods and succeed in indicating a range of specific situations, in
which a particular estimation method proves superior. An MC study considering StoNED can
be found in the originating paper Kuosmanen and Kortelainen (2010). Our simulation study
extends this initial one in three directions. Firstly, Kuosmanen and Kortelainen (2010) state
that one of the most promising avenues for future research is to conduct further MC simulations
under a wider range of conditions. We respond to this call by analyzing the influence of
sample size, the production function (number of inputs, correlation between inputs, functional
form, economies of scale and elasticity of substitution) and the error terms (distribution of
the inefficiency term, ratio of inefficiency and noise, and heteroscedasticity of the inefficiency
term). Secondly, Kuosmanen and Kortelainen (2010) restrict their study to the “simpler”
method of moments estimator (MoM). Nevertheless, among others, Olson et al (1980) and Coelli
(1995) demonstrate in MC experiments that the choice of estimation technique impacts on the
performance of the method. Hence, in this paper, we also consider the maximum likelihood
estimator (ML) and the pseudolikelihood estimator (PL) for SFA and StoNED, respectively.
Thirdly, we particularly measure performance in terms of technical efficiency instead of the
estimated production frontier and, thus, provide a complementary view to Kuosmanen and
Kortelainen (2010). From our point of view, most of the practical applications of efficiency
estimation methods as well as the empirical studies focus on technical efficiency. Nevertheless, to
give a comprehensive comparison, we also examine the performance of the methods in terms of
the estimated production frontier for a couple of settings. In total, we analyze the performance
of the following five methods DEA, SFA MoM, SFA ML, StoNED MoM and StoNED PL within
200 different settings.

The remainder of this paper is organized as follows. In Section 2, we explain the methods
used in this study, DEA, SFA and StoNED, and the estimation techniques MoM, ML and PL.
Section 3 describes the general simulation design of the Monte Carlo experiment. In Section
4, we first show the aggregated results and highlights the strengths and weaknesses of the
methods. Afterwards we present the detailed results and discuss the various influence factors.
Finally in Section 5, we summarize the most important findings and provide some directions
for further research.

2 Methods

In this section, we describe the efficiency estimation methods used in this study. Before de-
scribing the methods in detail, we first give an overview of the main differences and the general
procedure. We assume that there is cross-sectional data of n decision making units (DMU),
for example, firms or universities. Each DMUj(j = 1, ..., n) produces a single output qj using
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m inputs zi,j(i = 1, ...,m). The relationship between the inputs and the output, i.e. the de-
terministic production frontier, is expressed by F (zi,j). The observable, factual output qj can
deviate from the optimal output, determined via F (zi,j), by a factor εj:

qj = F (zi,j)︸ ︷︷ ︸
Production Frontier

·exp(εj) j = 1, ..., n. (1)

The efficiency estimation methods can be categorized into parametric vs. nonparametric, as
well as deterministic vs. stochastic. The first component of efficiency estimation methods
is to estimate the underlying production function. While the parametric SFA requires an
assumption about the functional form of the production function, DEA is nonparametric and
the construction of the frontier is only restricted via its axiomatic foundation.1 This is the main
disadvantage of SFA compared to DEA. The semi-parametric StoNED avoids this shortcoming
by using convex nonparametric least squares (CNLS). CNLS does not need an assumption of a
particular functional form, but chooses a function from the family of continuous, monotonically
increasing, concave functions that can be non-differentiable (cf. Kuosmanen and Kortelainen
(2010)). Therefore, these assumptions are comparable with those of DEA, but are less restrictive
than those of SFA.

The second important difference between the efficiency estimation methods is the assumption
about the composition of the factor εj. While the deterministic DEA assumes that the entire
deviation εj attributes to inefficiency, stochastic methods – SFA and StoNED – estimate tech-
nical efficiency, while admitting that there could be random noise vj in the data, for example,
due to variation in weather conditions, measurement errors or just coincidence. Adding this
stochastic term to equation (1) leads to:

qj = F (zi,j)︸ ︷︷ ︸
Production Function

· exp(εj)︸ ︷︷ ︸
Composed error term

with εj = vj − uj and j = 1, ..., n, (2)

where the composed error term (εj) is the combination of inefficiency uj and the noise term vj.
The challenge for stochastic models is the decomposition of the composed error term into a noise
term and an inefficiency term. For this purpose, the skewness of the distribution of the error
term εj is crucial. In general parlance: “Luck”, expressed by the noise term vj, can contribute
positively or negatively and we expect by definition that, on average, it is balanced. Hence, it is
plausible to assume a symmetric distribution with a zero mean. In contrast, inefficiency uj only
affects in one direction and therefore, its distribution is skewed. In the case of a production
function, inefficiency can only impact negatively. Due to the fact that the distribution of the
composed error term εj is the combination of these two distributions, it indicates the presence
of inefficiency. The likelihood of inefficiency increases with the skewness of the distribution
of εj. Using distributional assumptions for the noise term and the inefficiency term, SFA and
StoNED estimate the error term εj as well as the ratio of noise and inefficiency, by means of
the method of moments, maximum likelihood or pseudo-maximum likelihood technique.

1Axioms: Convexity, Inefficiency (“Free Disposability”), Ray Unboundedness (“Returns to Scale”) and Mini-
mum Extrapolation, see Banker et al (1984).
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The second step is the determination of technical efficiency for each DMU. Independent of
the stochastic method, using the estimates of step one – the error term εj and the ratio of
noise and inefficiency – individual efficiency can be estimated. The deterministic DEA does
not consider random noise and thus the technical efficiency is the entire deviation from the
estimated frontier.

Figure 1 summarizes the main differences between the methods. In this respect, the recently
introduced StoNED is arranged in the middle of the two oldies DEA and SFA, as it combines
the flexibility of DEA with the stochastic nature of SFA, in a unified framework of frontier
estimation.

Technical efficiency 

Results 

St
ep

 1
 

St
ep

 2
 

ML 
(Maximum Likelihood) 

PL 
(Pseudolikelihood) 

MoM 
(Method of Moment) 

Parameter estimates 

DEA 
(Data Envelopment Analysis) 
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Deterministic 

StoNED 
(Stochastic Non-smooth 
Envelopment of Data) 

 
Semi-parametric 

Stochastic 

SFA 
(Stochastic Frontier Analysis) 

 
 

Parametric 
Stochastic 

Individual efficiency 

LP 
(Linear Programming) 

Figure 1: Overview of the methods procedure.

2.1 Data Envelopment Analysis (DEA)

DEA is generally attributed to Charnes et al (1978) who introduced the term data envelopment
analysis. Their original model, also known as the CCR model, assumes constant returns to
scale (CRS) and is input orientated. Nowadays, there is a wide range of different models which
consider alternative sets of assumptions. An overview can be found, for example, in Cook and
Seiford (2009).

In our study, we use the standard BBC model (Banker et al (1984)) which allows for variable
returns to scale (VRS). In the multiple-input multiple-output context, each DMUj produces s
outputs qr,j(r = 1, ..., s) using m inputs zi,j(i = 1, ...,m). In order to determine the individual
efficiency of the k-th DMU , the following output-oriented two-stage BBC model (cf. Banker
et al (2004)) must be maximized
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maximizeφ,λ φk − θ

(
m∑
i=1

s−i +
s∑

r=1

s+r

)
(3)

subject to zi,k =
n∑

j=1

λjzi,j + s−i , i = 1, ...,m,

φkqr,k =
n∑

j=1

λjqr,j − s+r , r = 1, ..., s,

n∑
j=1

λj = 1,

λj, s
−
i , s

+
r ≥ 0 ∀ i, r, j,

where θ is an infinitesimal non-Archimedean constant, λj are the weightings, φk is a scalar and
1 ≤ φk ≤ ∞.2 The output and input slacks are s+r and s−i , respectively. In order to obtain
efficiency values for all DMUs, the linear programming model must be solved for each DMU,
i.e. n times. The estimated technical efficiency (TE) is defined by

ˆTEj = 1/φk with 0 ≤ ˆTE ≤ 1. (4)

A value of one indicates a point on the efficient frontier and thus a fully efficient DMU, according
to Farrell (1957). Until now, only a StoNED model exists for the multiple-input single-output
case (see Kuosmanen and Kortelainen (2010)). Hence, in order to compare the methods, we
restrict our analysis to the simpler multiple-input single-output case, i.e. s = 1.

2.2 Stochastic Frontier Analysis (SFA)

2.2.1 SFA maximum likelihood (SFA ML)

Aigner et al (1977) and Meeusen and van den Broeck (1977) simultaneously developed a stochas-
tic parametric model, the stochastic frontier analysis (SFA). A comprehensive treatment of SFA
can be found in Kumbhakar and Lovell (2003). SFA is a parametric method and requires an
assumption regarding the functional form of the production function. Assuming a log-linear
Cobb-Douglas form, we can rewrite equation (2) as

yj = β0 +
m∑
i=1

βi · xi,j + εj with εj = vj − uj and j = 1, ..., n. (5)

2This envelopment formulation is usually the preferred form, because it has fewer constraints than the multiplier
form (see Coelli et al (2005)).
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Note that yj = ln(qj) and xj = ln(zj). The noise term vj and the inefficiency term uj are
assumed to be statistically independent of each other, as well as of the inputs xj. The latter
assumption implies that inefficiency and random noise are homoscedastic, i.e. independent of
the scale of the DMU.

Throughout this paper, we use the standard normal-half normal model. That is, we assume a
normally distributed noise term vj ∼ N(0, σ2

v) and a half normally distributed inefficiency term
uj ∼ |N(0, σ2

u)|.3 Under these assumptions, the marginal density function of the composed
error term is defined by:

f(ε) =
2

σ
· φ

( ε

σ

)
· Φ

(
−ελ

σ

)
(6)

where σ =
√

σ2
u + σ2

v , λ = σu

σv
, and φ and Φ are the standard normal cumulative distribution

and the density function, respectively. The ratio of inefficiency and noise is represented by λ.
If λ → 0, the composed error term is dominated by the noise term. In contrast, if λ → ∞, the
inefficiency term dominates the composed error term.

Maximum likelihood estimation is an appropriate technique for estimating σu, σv and εj. The
corresponding likelihood function must be maximized:

L(α, β, σ, λ) = constant− n · ln(σ) +
n∑

j=1

ln Φ

(
−εjλ

σ

)
− 1

2σ2

n∑
j=1

ε2j , (7)

where εj is defined by

εj = yj − (β0 +
m∑
i=1

βi · xi,j). (8)

After this first step, the individual technical efficiency can be obtained by decomposing the
estimated error term ε̂j into an estimated noise term v̂j and an estimated inefficiency term ûj.
For the standard normal-half normal model, Jondrow et al (1982) (JMLS) showed that the
conditional distribution of u, given the composed error term ε, is

f(u|ε) = 1√
2πσ∗

·
exp

[
− (u−μ∗)2

2σ2∗

]
[
1− Φ

(
−μ∗

σ∗

)] , (9)

with μ∗ = −εσ2
u/σ

2 and σ2
∗ = σ2

uσ
2
v/σ

2.

Based on the maximum likelihood estimates, individual technical efficiency can be estimated
by several point estimators. In this study, we use the point estimator proposed by Battese and
Coelli (1988):

3The normal-half normal model is the most common model. There are other models which mainly differ
in the assumption with respect to the inefficiency distribution, e.g. the normal-exponential model. For a
comprehensive treatment of the different models, see Kumbhakar and Lovell (2003).
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ˆTEj = Ê(exp(−uj)|ε̂j) = Φ(μ̂∗j/σ̂∗ − σ̂∗)
Φ(μ̂∗j/σ̂∗)

· exp
(
1

2
σ̂2
∗ − μ̂∗j

)
. (10)

This estimator is optimal in the sense of minimizing the mean square error and is mostly used in
empirical and theoretical applications (cf. Bogetoft and Otto (2011)). It is worth emphasizing
that the JMLS estimator is not a consistent estimator of uj. Independent of the sample size n,
there is only one observation of each DMUj. Therefore, the JMLS estimator does not converge
to uj, even if the sample size reaches infinity, but converges to E(u|ε), which is the mean of
the distribution from which uj is drawn (cf. Greene (2008)). However, note that we apply
the Battese and Coelli (1988) point estimator, which estimates the technical efficiency more
accurate than the JMLS estimator (see Battese and Coelli (1988)). Using cross-sectional data,
this is the best that can be achieved.

In short, the SFA ML estimation consists of two steps. Firstly, the parameters are estimated
using the maximum likelihood method (equation (7)). Based on the maximum likelihood
estimates, the individual efficiency of each DMU is estimated using the Battese and Coelli
(1988) point estimator, equation (10).

2.2.2 SFA method of moments (SFA MoM)

An alternative to the maximum likelihood estimation is the method of moments, which splits the
first step into two parts. In the first part (A), an OLS regression is used to obtain estimates for
the composed error term (see also Figure 2). Using OLS regression to estimate the production
function, the estimates for all slope coefficients (βi) are consistent. However, the intercept
β̂0,OLS is biased by E(uj) and therefore, the estimated OLS residuals ε̂j,OLS does not equal the
composed error term εj, which has to be estimated (ε̂j 	= ε̂j,OLS) (cf. Kumbhakar and Lovell
(2003)).

Assuming the normal-half normal model, this bias can be corrected – as indicated in Part B of
Figure 2 – by using the fact that E(uj) is a constant and the central moments of the composed
error term εj to be estimated are the same as those of ε̂j,OLS. The second and third central
moments of the distribution can be estimated from the OLS residuals ε̂j,OLS in the following
way (cf. Kuosmanen and Kortelainen (2010)):

M̂f =
1

n

n∑
j=1

(ε̂j,OLS − Ê(εj,OLS))
f f = 2, 3. (11)

Consequently, we can estimate the standard deviation of the noise term σv and the inefficiency
term σu by:

σ̂u = 3

√√√√ M̂3√
2
π
· (1− 4

π

) , (12)
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σ̂v =

√
M̂2 −

(
1− 2

π

)
σ̂2
u. (13)

Subsequently, a consistent estimate for the intercept of the production function is given by:

β̂0 = β̂0,OLS + Ê(uj) = β̂0,OLS +

√
2

π
σ̂u. (14)

After shifting the OLS frontier upwards by the expected value of the inefficiency term, all
estimates are unbiased and consistent (see Aigner et al (1977), Kumbhakar and Lovell (2003)
and Greene (2008)) and the estimate of the composed error term εj can be calculated by

ε̂j = ε̂j,OLS −
√

2

π
σ̂u. (15)

Analogously to the maximum likelihood technique, firm-specific efficiency is estimated by means
of the Battese and Coelli (1988) point estimator, equation (10), in a second step.

2.3 Stochastic non-smooth envelopment of data (StoNED)

2.3.1 StoNED pseudolikelihood (StoNED PL)

Kuosmanen and Kortelainen (2010) recently introduced the stochastic non-smooth envelopment
of data (StoNED). StoNED avoids the main disadvantage of SFA – its parametric nature – by
using convex nonparametric least squares (CNLS) to estimate the production function. CNLS
does not require an assumption about the functional form of the production function, but
determines a frontier from the family of continuous, monotonically increasing, concave functions
which best fits the data (see Kuosmanen (2008)).

Similar to the procedure for the SFA MoM, step one consists of two parts (see Figure 2).
Instead of using OLS regression in Part A, the shape of the production function is estimated
by CNLS regression. In order to obtain the CNLS residuals εj,CNLS, the following quadratic
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programming problem has to be solved (cf. Kuosmanen and Kortelainen (2010))

minimizeq̂,β0,βi

n∑
j=1

(ln(qj)− ln(q̂j))
2 (16)

subject to q̂j = β0,j +
m∑
i=1

βi,jzi,j,

β0,j +
m∑
i=1

βi,jzi,j ≤ β0,h +
m∑
i=1

βi,hzi,j ∀ h, j = 1, ..., n and i = 1, ...,m,

βi,j ≥ 0 ∀ j = 1, ..., n and i = 1, ...,m.

with εj,CNLS = ln(qj)− ln(q̂j).

Using CNLS, we obtain estimates ε̂j,CNLS for the deviation from the estimated production
function. However, these estimates are biased in a similar manner to the OLS residuals ε̂j,OLS.
Therefore, in Part B, distributional assumptions on the inefficiency and noise term are required
and an estimation technique – pseudolikelihood or method of moments – has to be applied.

Assuming the normal-half normal model, the pseudolikelihood (PL) approach, suggested by
Fan et al (1996), can be applied. We set σ = σu + σv, λ = σu

σv
and maximize the following

log-likelihood function:

ln L(λ) = −n ln σ̂ +
n∑

j=1

ln Φ

[−ε̂jλ

σ̂

]
− 1

2σ̂2

n∑
j=1

ε̂2j , (17)

ε̂j = ε̂j,CNLS −
√
2λσ̂√

π (1 + λ2)
, (18)

σ̂ =

√√√√√√ 1
n

n∑
j=1

ε̂2j,CNLS

1− 2λ2

π(1+λ)

. (19)

When the optimal solution for λ̂ is found, the estimates for ε̂j and σ̂ can be calculated by
equations (18) and (19).

In analogy to SFA, in the second step, the Battese and Coelli (1988) point estimator, equation
(10), is used to calculate the technical efficiency for each DMU.

2.3.2 StoNED method of moments (StoNED MoM)

The method of moments can be used as an alternative estimation technique to pseudolikelihood.
Accordingly, part A of step one is the same as described above. The shape of the production
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function is estimated by CNLS regression. In accordance with the SFA MoM, in Part B, the
central moments of the CNLS residuals εj,CNLS are calculated by using equation (11). The
standard deviations of the inefficiency σ̂u and noise σ̂v term are then estimated using equations
(12) and (13), respectively. To complete step one, ε̂j is obtained by equation (15). Again, the
technical efficiency is obtained by the Battese and Coelli (1988) point estimator, equation (10),
in the second step. Figure 2 shows the procedure of the methods in detail. The numbers in
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Figure 2: Detailed overview of the methods procedure.

brackets refer to the respective equations above.

3 Simulation Design

The aim of this paper is to evaluate the presented methods within the controlled environment
of an MC simulation. Using empirical data, it is impossible to evaluate the performance of
different methods, because the “true” efficiency is not known. Hence, MC simulations are used
to avoid this problem. As stated by Perelman and Santin (2009), MC studies are the “statistical
referee” most frequently used to verify the potential strengths and weaknesses of competing
estimation methods. They enable researchers to generate their own artificial dataset under
specific assumptions. For the data generating process (DGP), the underlying assumptions have
to be defined. A certain set of assumptions is referred to as “setting”. Within a given setting,
the DGP can be replicated several times in order to obtain reliable results. By analyzing
different settings, for instance varying the number of DMUs, the influence of this specific factor
can be measured. The difficulty is to decide how the settings should be varied, so as to derive
a wide and meaningful spectrum.
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The first best optimum would be to consider all possible specifications of influencing factors.
As this approach becomes increasingly complex, an alternative has to be used. In Andor and
Hesse (2011), we defined a standard set, i.e. one specification for all influencing factors. This
standard set was used as the point of reference for the following sensitivity analysis. Accordingly,
we varied the different influencing factors successively, while keeping the remaining factors
unchanged. This kind of analysis facilitates the use of more specifications for a single factor.
However, it is restricted in such a way that all the other parameters are kept unchanged.
In this paper, we use a compromise to avoid this limitation. We create 12 standard sets
which vary with respect to the number of decision making units, the production function and
the composite error term. This seems to be an appropriate approach for our purpose, as our
analysis is multidimensional and the conclusions are based on a wider basis. In total, we analyze
the results of 200 settings and each is replicated 50 times (R=50), so that we consider 10.000
datasets. As especially the DEA and CNLS regression of the StoNED are time-consuming to
replicate, this represents a reasonable compromise between accuracy and computational time.

Below, we define the DGP for the 12 standard sets. We follow Ruggiero (1999), Jensen (2005)
and others, by using two inputs, z1 and z2, which are generated from a uniform distribution
with the interval (5, 15). Furthermore, we assume that there is no collinearity between z1 and
z2 (ρ = 0) and that the inefficiency and the noise term are homoscedastic. The endogenous
variable qj, the output, is calculated by the following equation:

ln(qj) = ln(F (zi,j))︸ ︷︷ ︸
Production Function

+ εj︸︷︷︸
Composed error term

with εj = vj − uj, (20)

where uj and vj represent the inefficiency term and the statistical noise term, respectively. We
assume that the inefficiency term is exponentially distributed uj ∼ Exp(μ=1/6), with parameter
μ representing the expected inefficiency. This leads to an expected (technical) efficiency of
approximately 86%. The noise term is normally distributed vj ∼ N(0, σ2

v) with σv = ρnts
· μ, where ρnts represents the noise-to-signal ratio, i.e. ρnts = σv

σu
. This DGP calibration

is similar to the procedure in Kuosmanen and Kortelainen (2010) and Simar and Zelenyuk
(2011). Regarding the production function, we use three different specifications that are also
used in other MC studies. They vary with respect to returns to scale and input substitution (see
Table 1). The combination with a varying number of DMUs (50 and 100) and two specifications
for the noise-to-signal ratio (0 and 1) results in the 12 standard settings. For the remaining 200
settings, we describe the variation of the DGP at the beginning of the specific analysis. The five

No PF (F(x)) Description Parametrization Source

I
∑m

i=1 βi · ln(zi,j) Cobb-Douglas, IRS β1 = β2 = 0.6 a

II ln( [
∑m

i=1 αi · z−ρi
i,j ]−δ/ρ) CRESH δ=1, α1=α2=0.5, ρ=ρi=2 b

III
β0 +

∑m
i=1 βi · ln(zi,j) + 0.5 ·∑m

i=1

∑m
f=1 βi,f · ln(zi,j) · ln(zi,j) Translog

β0=1, β1= β2=0.3, β11 = β22 = β12

= β21= 0.1

c

Table 1: Standard sets: Production functions. IRS: Increasing returns to scale. a Adler
and Yazhemsky (2010) in modified form, b Yu (1998) in modified form, c Cordero et al (2009).
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methods DEA, SFA MoM, SFA ML, StoNED MoM and StoNED PL are applied with the model
specifications described in section 2 using the drawn inputs and the generated output.4 Olson
et al (1980) and Banker et al (1993) identify that there can be two problems with the method
of moments approach. Type I failure occurs when the skewness of the error term ε is positive
M̂3 ≥ 0. We follow Kuosmanen and Kortelainen (2010) in these cases and set M̂3 = −0.0001.
Type II failure occurs when the estimated standard deviation of the noise term (σ̂v) is negative.
In accordance with Kuosmanen and Kortelainen (2010), we set σ̂v = 0.0001 in these cases.

Finally, the evaluation of the methods requires a performance criterion. Ruggiero (1999) and
others focus on ranking accuracy, using the average rank correlation between “true” and es-
timated technical efficiency. However, from our perspective, ranking accuracy is an inferior
performance criterion in real-world applications, because policy makers often have to set in-
dividual efficiency objectives. Hence, the ability to measure individual efficiency is the most
important factor. Accordingly, we use the mean absolute deviation (MAD) between the esti-
mated and the true technical efficiency value, as our main performance criterion.

MAD =
1

nR

R∑
r=1

n∑
j=1

∣∣∣ ˆTEr,j − TEr,j

∣∣∣ , (21)

where ˆTEj denotes the estimated and TEj the true technical efficiency, and r is the index
for the replications for a certain setting. In order to gain additional insight into the influence
of a particular factor, we also calculate the following three additional information criteria:
Mean deviation (MD), mean squared error (MSE) and mean rank correlation (MRC). We
discuss them, whenever they yield additional information about performance variation. The
information criteria are defined by:

MD =
1

nR

R∑
r=1

n∑
j=1

( ˆTEr,j − TEr,j), (22)

MSE =
1

nR

R∑
r=1

n∑
j=1

( ˆTEr,j − TEr,j)
2. (23)

The Spearman rank correlation is defined as the Pearson linear correlation of the ranked tech-
nical efficiencies:

MRC =
1

R

R∑
r=1

∑n
j=1(t̂er,j − ¯̂ter)(ter,j − t̄er)√∑n

j=1(t̂er,j − ¯̂ter)2
∑n

j=1(ter,j − t̄er)2
, (24)

where the n technical efficiencies TEj are converted to ranks tej. The results for these three
criteria are shown in the appendix. Furthermore, we briefly review the aggregated results in

4StataSE 11.2 is used for the implementation of the DGP and the estimation of DEA while General Algebraic
Modeling System (GAMS) Version 23.3.2 is used to estimate the other four methods. The codes are available
upon request from the authors.
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the next section.

Note that we measure performance in terms of technical efficiency applying the Battese and
Coelli (1988) point estimator introduced in equation (10), while the studies of Simar and
Zelenyuk (2011) and Kuosmanen and Kortelainen (2010) rely on the estimated production
function as the performance criterion. There are two reasons for doing this. First, this allows
us to provide a complementary view on performance of the methods. Second, from our point
of view, most of the practical applications of efficiency estimation methods as well as many of
the empirical studies focus on the technical efficiency. Nevertheless, to provide a comprehen-
sive comparison, we also examine the performance of the methods in terms of the estimated
production frontier in Subsection 4.6.

4 Results

4.1 Overall results

In this section, we present and discuss the results of the simulation study. In total, we have
results from 200 settings. In the interests of clarity, the analysis is carried out in two stages.
Firstly, we focus on a comparison of the aggregated results of the 200 settings and discuss
some important characteristics of the methods. In the second stage, we successively analyze
the influence of specific factors on the performance of the various methods.

Table 2 shows the mean deviation and the average of the other three performance criteria for
all 200 settings. We additionally order the methods from best to worst, for each setting under
consideration, so as to calculate the mean rank for each performance criterion. A rank of one
represents the “winner” and a rank of five the “loser”.

DEA SFA MoM SFA ML StoNED MoM StoNED PL

MD -0.0724 -0.0519 -0.0242 -0.0412 0.0260

MAD 0.1105 0.0853 0.0649 0.0862 0.0700

Rank (MAD) 3.63 3.36 2.13 3.52 2.38

MSE 0.0268 0.0123 0.0104 0.0131 0.0102

Rank (MSE) 3.58 3.27 2.16 3.58 2.44

MRC 0.6627 0.6878 0.7052 0.6357

Rank (MRC) 3.18 2.01 1.38 3.44

Table 2: Overview of the performance criteria for all 200 settings.

The mean deviation (MD) is an important characteristic of the methods, as it shows the bias of
the efficiency estimation. The results highlight an interesting difference between the StoNED
PL and the other methods. While all other methods underestimate on average, the StoNED
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PL overestimates the efficiency. The average MD also shows, that SFA is the method with the
lowest bias, whereas DEA is the method with by far the greatest bias. The fact that DEA
underestimates is not particularly surprising, because we consider noise in approximately 53%
of the settings. A second general peculiarity is that the MoM methods, SFA MoM and StoNED
MoM, achieve relatively similar results with regard to the MD, MAD and MSE. In contrast,
the results of StoNED PL differ considerably from the SFA ML, as well as the StoNED MoM
in general. This conclusion can be drawn for almost all 200 settings.

The aggregated results for the MAD suggest that SFA ML is the best method. Nevertheless,
the recently introduced StoNED PL seems to be a serious competitor, as it has the second
lowest MAD and its MSE is even slightly lower than that of SFA ML. The MoM estimation
techniques, SFA MoM and StoNED MoM, achieve similar average MADs. DEA exhibits the
highest MAD, but the rank(MAD) is similar to those of the MoM methods. Except for the
comparison of StoNED PL and SFA ML, MAD and MSE come to the same conclusion.

The rank correlation demonstrates both a characteristic and a weakness of the StoNED meth-
ods. The former is that both methods, StoNED MoM and StoNED PL, have the same rank
correlation. The weakness is that it has a lower average rank correlation than the other meth-
ods. As a result, if practitioners or researchers regard the rank correlation as the appropriate
criterion for their purposes, our results advise against using StoNED.

As mentioned above, the chosen settings aim to cover a wide range of assumptions, and the
aggregated results shed light on the overall performance. However, each method has its own
strengths and weaknesses. Below, we consider two specific subsamples of the 200 settings in
order to emphasize them.

DEA SFA MoM SFA ML StoNED MoM StoNED PL

MD 0.0112 -0.0552 -0.0035 -0.0392 0.0200

MAD 0.0407 0.0694 0.0231 0.0704 0.0519

Rank (MAD) 2.31 4.07 1.32 4.05 3.24

MSE 0.0048 0.0075 0.0023 0.0084 0.0063

Rank (MSE) 2.29 3.87 1.40 4.18 3.28

MRC 0.8449 0.8665 0.9039 0.7973

Rank (MRC) 2.84 2.32 1.26 3.59

Table 3: Overview of the performance criteria in the subsample without noise (ρnts =
0).

The underlying assumption of DEA, that there is no noise in the data, is violated in every
setting with ρnts > 0. Hence, we compare the deterministic DEA with the stochastic methods
in a nondiscriminatory subsample, i.e. we restrict the analysis to the 94 settings without noise
(ρnts = 0). Table 3 summarizes the results. In general, all performance criteria for all methods
improve considerably in the subsample without noise. However, it is interesting to compare the
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relative performance of the methods. Even in this subsample, SFA ML is still the best method,
but followed closely by DEA. For these methods, the MD yields what is to be expected. In the
scenario without noise, the underestimation declines. This is particularly true for the DEA, as
the MD changes from -0.0724 to 0.0112. DEA overestimates in settings without noise, whereas
it underestimates in those with noise. The StoNED PL and SFA MoM underestimate more
in the scenario without noise. Although this leads to a lower efficiency bias (MD) and MAD
for the StoNED PL, its relative performance deteriorates in comparison to DEA and SFA. A
further conclusion is that the relative performance of the MoM technique worsens considerably
in the scenario without noise. This conclusion supports the recommendation of Olson et al
(1980) and Coelli (1995) that the SFA ML method is preferable to the SFA MoM, when there
is little noise in the data.

DEA SFA MoM SFA ML StoNED MoM StoNED PL

MD -0.1334 -0.0479 -0.0358 -0.0416 0.0330

MAD 0.1607 0.0959 0.0931 0.0968 0.0820

Rank (MAD) 4.63 2.86 2.58 3.22 1.71

MSE 0.0416 0.0154 0.0151 0.0160 0.0127

Rank (MSE) 4.56 2.85 2.56 3.25 1.80

MRC 0.5318 0.5622 0.5634 0.5226

Rank (MRC) 3.48 1.73 1.45 3.34

Table 4: Overview of the performance criteria in the subsample with noise (ρnts > 0).

For the contrary subsample, i.e. all 106 settings with noise (ρnts > 0), all performance criteria
deteriorate. Here, it is particularly remarkable that StoNED PL outperforms the SFA ML (and
all other methods) in terms of MAD and MSE. Consequently, we can conclude that a great
virtue of StoNED PL is its ability to measure efficiency when there is (a lot of) noise in the
data (see also section 4.3.1). In addition, the performance of the MoM methods, especially
SFA MoM, are also relatively good and are similar to that of the SFA ML. Again, this supports
the conclusion of Olson et al (1980) and Coelli (1995) that the MoM estimation technique has
its comparative advantage vis-à-vis the maximum likelihood estimation technique, when the
ratio of noise to inefficiency is high. However, this conclusion seems invalid for the StoNED
PL, because it performs considerably better than the StoNED MoM. While the MAD and
rank(MAD) are very similar for the StoNED MoM and the SFA methods, the rank(MAD) of
StoNED PL is 1.71.

In the following analysis, we focus on analyzing the influence of factors on the particular method
and the corresponding relative performance. We divide this analysis into three main categories
of sample size, error term and production function. The MAD is our main performance criterion
and the results are presented in tables in which the parameter values for the factor under
inspection, as well as the five methods, are arranged vertically, while the remaining (control)
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variables are arranged horizontally. As mentioned earlier, the results for the other performance
criteria can be found in the appendix.

4.2 Variation of sample size

In several MC studies, sample size has been identified as one important factor influencing the
performance of efficiency estimation methods (see, for instance, Olson et al (1980), Banker
et al (1993), Ruggiero (1999) and Badunenko et al (2011)). In addition to our standard sample
size assumptions of 50 and 100 DMUs, we now consider two additional number of DMUs: 20
and 200 DMUs. In comparison to Olson et al (1980), these sample sizes are relatively small.
However, problems with more than 300 observations can take several days for the StoNED
method (see Kuosmanen (2012b)). Furthermore, from our perspective, these sample sizes are
the most relevant for real-world applications. Table 5 contains the resulting MAD values for
the variation of sample size.

NTS 0 1

Method PF PF I PF II PF III PF I PF II PF III

DEA DMU = 20 0.0539 0.0545 0.0551 0.1209 0.1055 0.1354

DMU = 50 0.0314 0.0357 0.0373 0.1384 0.1335 0.1544

DMU = 100 0.0206 0.0232 0.0326 0.1729 0.1648 0.1960

DMU = 200 0.0127 0.0170 0.0319 0.1985 0.1814 0.2210

SFA MOM DMU = 20 0.0569 0.0634 0.0621 0.0952 0.1004 0.0940

DMU = 50 0.0688 0.0697 0.0755 0.0917 0.1032 0.0976

DMU = 100 0.0791 0.0737 0.0811 0.0987 0.1034 0.0896

DMU = 200 0.0838 0.0832 0.0771 0.1029 0.1086 0.0997

SFA ML DMU = 20 0.0279 0.0422 0.0273 0.1135 0.1182 0.1080

DMU = 50 0.0101 0.0344 0.0130 0.0949 0.1006 0.0960

DMU = 100 0.0053 0.0332 0.0119 0.0907 0.0912 0.0894

DMU = 200 0.0024 0.0315 0.0114 0.0866 0.0939 0.0868

STONED MOM DMU = 20 0.0610 0.0665 0.0684 0.1018 0.0923 0.0951

DMU = 50 0.0676 0.0634 0.0740 0.0906 0.1029 0.1011

DMU = 100 0.0734 0.0674 0.0799 0.0980 0.1021 0.0900

DMU = 200 0.0823 0.0798 0.0774 0.0965 0.1015 0.0994

STONED PL DMU = 20 0.0658 0.0642 0.0710 0.0986 0.0930 0.0900

DMU = 50 0.0466 0.0467 0.0509 0.0809 0.0814 0.0862

DMU = 100 0.0378 0.0368 0.0414 0.0749 0.0765 0.0776

DMU = 200 0.0376 0.0644 0.0520 0.0931 0.0851 0.0950

Table 5: Variation of sample size. Performance criterion: Mean absolute deviation
(MAD). DGP: Sample size: DMU= 20, 50, 100, 200; Error term: Noise-to-signal ratio (NTS):
0 and 1; uj ∼ Exp(μ=1/6); Heteroscedasticity: NO; Production function: PF I (Cobb Douglas
with increasing returns to scale), PF II (CRESH), PF III (Translog); Collinearity: 0; Input
distribution: zj ∼ U(5,15); Number of inputs(z): m= 2.

DEA is affected by a variation in sample size, but the direction of the effect depends on the
underlying scenario. In the scenario without noise (NTS=0), the performance of DEA improves
with an increasing number of DMUs, while the performance deteriorates with a growing number
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of DMUs in the scenario with noise (NTS=1). This diametrical effect is not an exception, but
we also find it when analyzing other influencing factors. The reason is that, in general, DEA
overestimates in the scenario without noise and underestimates in the scenario with noise
(see MD in Table 22 in the appendix). Furthermore, an increasing sample size leads to a
decreasing MD, i.e. the more observations, the more DMUs are underestimated. This can be
explained by the fact that the relative number of DMUs on the efficient frontier decrease with
the sample size. As a result, the “sample size effect” leads to a “downward shift” of the average
estimated efficiency and so partially counteracts the overestimation in the scenario without
noise. Therefore, it has a positive impact on the average performance. In contrast, it enforces
the “noise effect”, so that the underestimation in the settings with NTS=1 and a sample size
of 200 DMUs is glaringly obvious and the performance is considerably poorer. However, the
rank correlation generally improves with a growing number of DMUs (see MRC in Table 24 in
the appendix).

Regarding the variation of sample size, the MoM models are affected more in the scenario
without noise than with noise. In the former scenario, an increasing sample size seems to
worsen their performance. In contrast, the SFA ML performs better with increasing sample
size. Interestingly, the StoNED PL performance also improves with an increasing number of
DMUs, but for 200 DMUs, this relationship reverses, i.e. the performance worsens. While
the effect on the performance of the stochastic methods in terms of the MAD is ambiguous,
the effect on MD and MRC is generally unambiguous. The underestimation and the rank
correlation increases with the sample size, i.e. the MD decreases and the MRC increases (see
Table 22 and 24 in the appendix). The only exception is the setting with 200 DMUs for both
StoNED models. For this setting the MD is higher and the MRC is lower as in comparison to
the setting with 100 DMUs.

4.3 Variation of the error term

4.3.1 Noise-to-signal ratio (NTS)

The noise-to-signal ratio represents the relationship between noise and inefficiency and is ex-
pressed by ρnts = σv

σu
. Several studies verify that this ratio has a crucial impact on efficiency

estimation methods (see, Olson et al (1980), Banker et al (1993), Ruggiero (1999), Ondrich and
Ruggiero (2001), Jensen (2005) and Badunenko et al (2011)). In order to analyze the influence,
we generate data with ρnts = 0, 0.5, 1 and 2. Table 6 presents the results.
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Method
DMU 50 100

PF PF I PF II PF III PF I PF II PF III

DEA NTS = 0 0.0314 0.0357 0.0373 0.0206 0.0232 0.0326

NTS = 0.5 0.0650 0.0607 0.0815 0.0728 0.0674 0.0952

NTS = 1 0.1384 0.1335 0.1544 0.1729 0.1648 0.1960

NTS = 2 0.2908 0.3050 0.3247 0.3480 0.3331 0.3586

SFA MoM NTS = 0 0.0688 0.0697 0.0755 0.0791 0.0737 0.0811

NTS = 0.5 0.0799 0.0832 0.0883 0.0900 0.0881 0.0813

NTS = 1 0.0917 0.1032 0.0976 0.0987 0.1034 0.0896

NTS = 2 0.1240 0.1255 0.1240 0.1153 0.1260 0.1311

SFA ML NTS = 0 0.0101 0.0344 0.0130 0.0053 0.0332 0.0119

NTS = 0.5 0.0623 0.0663 0.0617 0.0587 0.0642 0.0585

NTS = 1 0.0949 0.1006 0.0960 0.0907 0.0912 0.0894

NTS = 2 0.1427 0.1516 0.1501 0.1313 0.1444 0.1400

StoNED MoM NTS = 0 0.0676 0.0634 0.0740 0.0734 0.0674 0.0799

NTS = 0.5 0.0806 0.0791 0.0885 0.0894 0.0986 0.0826

NTS = 1 0.0906 0.1029 0.1011 0.0980 0.1021 0.0900

NTS = 2 0.1289 0.1279 0.1282 0.1208 0.1258 0.1348

StoNED PL NTS = 0 0.0466 0.0467 0.0509 0.0378 0.0368 0.0414

NTS = 0.5 0.0652 0.0636 0.0649 0.0580 0.0593 0.0587

NTS = 1 0.0809 0.0814 0.0862 0.0749 0.0765 0.0776

NTS = 2 0.1050 0.1100 0.1118 0.1036 0.1048 0.1048

Table 6: Variation of noise-to-signal ratio. Performance criterion: Mean absolute
deviation (MAD). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio (NTS): 0, 0.5, 1
and 2; uj ∼ Exp(μ=1/6); Heteroscedasticity: NO; Production function: PF I (Cobb Douglas
with increasing returns to scale), PF II (CRESH), PF III (Translog); Collinearity: 0; Input
distribution: zj ∼ U(5,15); Number of inputs(z): m= 2.

Obviously, all methods perform worse with an increasing noise-to-signal ratio, with respect to
both the MAD and the MRC. Hence, the relative comparison is of primary importance as to
which methods are influenced most. As DEA is deterministic, it is the method which is most
negatively affected by this variation. On average, the DEA MAD is eleven times higher when
noise-to-signal ratio is 2 instead of 0. However, even in the scenario without noise, SFA ML
performs better in most of the settings and the order of methods in almost all settings, from
best to worst is as follows: SFA ML, DEA, StoNED PL, StoNED MoM and SFA MoM. In
contrast, StoNED PL is the least affected method: Its MAD also increase with an increasing
noise-to-signal ratio, but in comparison to the other methods, its “competitiveness” increases.
The ability to handle a lot of noise seems to be a comparative advantage of StoNED PL. In the
scenario with NTS=2, the order is generally the following: StoNED PL, SFA MoM, StoNED
MoM, SFA ML and DEA. So we can conclude, that the higher the noise-to-signal ratio, the
better the StoNED PL and the MoM methods perform.

In these opposing cases (NTS=0 and NTS=2), the order of methods is comparatively consistent
and the conclusions are relatively unambiguous. However, an assumption somewhere between
these extremes could be more realistic. Note that a noise-to-signal ratio of two assumes that
the data has twice as much noise as inefficiency. Would an efficiency estimation make sense in
this case? Unfortunately, the conclusions are more ambiguous for the settings between these
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extremes. Given a NTS=0.5, StoNED PL and SFA ML are the best methods and DEA also
delivers comparable results in most settings. The MoM methods perform worse than the others.

4.3.2 Distribution of the inefficiency term

In order to measure the influence of the inefficiency distribution, we vary the DGP with respect
to it (cf., among others, Jensen (2005)). Apart from our standard exponential distribution
uj ∼ Exp(μ=1/6), we use a half normal N+ (0,0.021) and a beta distribution B (0.068,4) to
generate the ineffiency term. The parametrization is chosen in such a manner that they have
the same expected inefficiency value (see Table 7), whereupon the distributions differ with
regard to the expected standard deviation and the skewness. The skewness represents the
asymmetry regarding the inefficiency of the DMUs. The greater the skewness, the more DMUs
are relatively efficient, but some DMUs are indeed very inefficient. Note that we still assume a
half normally distributed inefficiency term for the stochastic methods.

Distribution
Expected

Mean Standard deviation Skewness

N+(0, 0.021) 0.167 0.127 1

Exp(μ = 1/6) 0.167 0.168 2

B(0.068, 4) 0.167 0.057 5.57

Table 7: Variations of the inefficiency distribution.

In general, all methods are affected by a variation in the inefficiency distribution (see Table 8),
but the direction of the effect on the MAD differs. However, we can see a homogeneous effect of
the variation on the MD and this explains the diverging effects on the MAD. The more skewed
the inefficiency distribution, the lower the MD, that is, the underestimation of DMUs increases.
As a result, the methods which generally overestimates are positively affected. These are the
StoNED PL and the DEA in the scenario without noise. Again, DEA is negatively affected
in the scenario with noise. In this case, DEA performs very poorly when inefficiency is drawn
from the (more skewed) beta distribution.

As expected, the MoM methods achieve the best results, if they are not misspecified, i.e.
inefficiency is generated by a half normal distribution. Surprisingly, this conclusion does not
apply for the performance of SFA ML and StoNED PL. In most settings, the results are worse,
when the assumptions are in accordance with the real DGP. For the StoNED PL, we give the
explanation above, while the effect on SFA ML is surprising. However, the results suggest that
a misspecification does not affect the ML performance as much as the MoM performance. This
finding is important as, in contrast to the SFA ML, the SFA MoM estimates the slope of the
production function without an assumption about the error term distribution, which is why
one might expect a misspecified inefficiency distribution to exert a stronger impact on the SFA
ML performance. Except for a few settings, we can conclude that the best PL and ML results
are obtained when the inefficiency is drawn from a beta distribution. Particularly in the noise
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scenarios, it seems that for these methods, the skewness of the inefficiency distribution is more
decisive than the specific form of distribution.

Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA ui ∼ HN(μ = 1/6) 0.0411 0.0450 0.0407 0.0262 0.0307 0.0344 0.1404 0.1306 0.1571 0.1617 0.1472 0.1800

ui ∼ Exp(μ = 1/6) 0.0314 0.0357 0.0373 0.0206 0.0232 0.0326 0.1384 0.1335 0.1544 0.1729 0.1648 0.1960

ui ∼ Beta(μ = 1/6) 0.0058 0.0016 0.0296 0.0068 0.0008 0.0360 0.2050 0.1905 0.2106 0.2338 0.2279 0.2624

SFA MoM ui ∼ HN(μ = 1/6) 0.0309 0.0422 0.0339 0.0248 0.0385 0.0259 0.0820 0.0824 0.0814 0.0742 0.0819 0.0793

ui ∼ Exp(μ = 1/6) 0.0688 0.0697 0.0755 0.0791 0.0737 0.0811 0.0917 0.1032 0.0976 0.0987 0.1034 0.0896

ui ∼ Beta(μ = 1/6) 0.0828 0.0872 0.0769 0.0901 0.0979 0.0899 0.0891 0.1006 0.0992 0.0893 0.0976 0.0876

SFA ML ui ∼ HN(μ = 1/6) 0.0170 0.0338 0.0150 0.0084 0.0326 0.0127 0.0981 0.1002 0.1001 0.0861 0.1001 0.0967

ui ∼ Exp(μ = 1/6) 0.0101 0.0344 0.0130 0.0053 0.0332 0.0119 0.0949 0.1006 0.0960 0.0907 0.0912 0.0894

ui ∼ Beta(μ = 1/6) 0.0000 0.0400 0.0217 0.0000 0.0399 0.0248 0.0771 0.0783 0.0873 0.0764 0.0902 0.0655

StoNED MoM ui ∼ HN(μ = 1/6) 0.0396 0.0409 0.0438 0.0315 0.0303 0.0354 0.0817 0.0803 0.0789 0.0754 0.0785 0.0767

ui ∼ Exp(μ = 1/6) 0.0676 0.0634 0.0740 0.0734 0.0674 0.0799 0.0906 0.1029 0.1011 0.0980 0.1021 0.0900

ui ∼ Beta(μ = 1/6) 0.0751 0.0644 0.0698 0.0821 0.0788 0.0818 0.0980 0.1057 0.1017 0.0929 0.0975 0.0945

StoNED PL ui ∼ HN(μ = 1/6) 0.0623 0.0618 0.0579 0.0463 0.0448 0.0554 0.0952 0.0929 0.0903 0.0935 0.0925 0.0950

ui ∼ Exp(μ = 1/6) 0.0466 0.0467 0.0509 0.0378 0.0368 0.0414 0.0809 0.0814 0.0862 0.0749 0.0765 0.0776

ui ∼ Beta(μ = 1/6) 0.0279 0.0238 0.0295 0.0269 0.0255 0.0320 0.0549 0.0548 0.0547 0.0489 0.0520 0.0465

Table 8: Variation of the distribution of the inefficiency term. Performance criterion:
Mean absolute deviation (MAD). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio
(NTS): 0 and 1; uj ∼ Exp(μ=1/6), N+ (0,0.021) and B (0.068,4); Heteroscedasticity: NO;
Production function: PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH),
PF III (Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15); Number of inputs(z): m=
2.

4.3.3 Heteroscedasticity

In the efficiency analysis literature, the effect of heteroscedasticity has been investigated by
Caudill and Ford (1993), Caudill et al (1995), Kumbhakar (1997), Hadri (1999), Hadri et al
(2003) and others. Caudill and Ford (1993) and Caudill et al (1995) point out that the per-
formance of the efficiency estimation methods are affected by a heteroscedastic inefficiency
term. Additionally, Hadri et al (2003) showed that inefficiency measures are also sensitive to
heteroscedasticity in the noise term. Analogously to Kuosmanen and Kortelainen (2010) and
Simar and Zelenyuk (2011), we investigate the influence of a heteroscedastic inefficiency term
and leave the influence of a heteroscedastic noise term for further research. In order to analyze
the influence of a heteroscedastic inefficiency term, we have to change the DGP, so that inef-
ficiency depends on the size of the DMU. Following Simar and Zelenyuk (2011), we draw the
inefficiency term from the half normal distribution uj|zj ∼ |N(0, (σu(z1,j + z2,j)/w)

2|, where
σu is 0.3. We set w = 28.72 to ensure that the expected inefficiency (μ = 1/6) remains un-
changed. Otherwise, we would be mixing the effect of heteroscedasticity with that of a change
in expected inefficiency. The noise term remains normally distributed, vj ∼ N(0, σ2

v), with

σv = ρnts ·E(σu) ·
√

(π − 2)/π. Because the inefficiency is size-related, the noise-to-signal ratio
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varies for each replication, so that the parameter ρnts should be interpreted here as the average
noise-to-signal ratio. The results are shown in Table 9.

Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA Homoscedastic 0.0314 0.0357 0.0373 0.0206 0.0232 0.0326 0.1384 0.1335 0.1544 0.1729 0.1648 0.1960

Heteroscedastic 0.0409 0.0453 0.0406 0.0265 0.0296 0.0325 0.0957 0.0930 0.1152 0.1115 0.1043 0.1370

SFA MoM Homoscedastic 0.0688 0.0697 0.0755 0.0791 0.0737 0.0811 0.0917 0.1032 0.0976 0.0987 0.1034 0.0896

Heteroscedastic 0.0400 0.0490 0.0390 0.0318 0.0424 0.0319 0.0700 0.0763 0.0780 0.0716 0.0680 0.0714

SFA ML Homoscedastic 0.0101 0.0344 0.0130 0.0053 0.0332 0.0119 0.0949 0.1006 0.0960 0.0907 0.0912 0.0894

Heteroscedastic 0.0170 0.0398 0.0177 0.0084 0.0329 0.0120 0.0807 0.0888 0.0948 0.0753 0.0680 0.0773

StoNED MoM Homoscedastic 0.0676 0.0634 0.0740 0.0734 0.0674 0.0799 0.0906 0.1029 0.1011 0.0980 0.1021 0.0900

Heteroscedastic 0.0486 0.0464 0.0502 0.0388 0.0357 0.0401 0.0696 0.0748 0.0798 0.0715 0.0673 0.0730

StoNED PL Homoscedastic 0.0466 0.0467 0.0509 0.0378 0.0368 0.0414 0.0809 0.0814 0.0862 0.0749 0.0765 0.0776

Heteroscedastic 0.0756 0.0704 0.0749 0.0589 0.0583 0.0640 0.0856 0.0913 0.0953 0.0897 0.0782 0.0904

Table 9: Influence of a heteroscedastic inefficiency term. Performance criterion:
Mean absolute deviation (MAD). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio
(NTS): 0 and 1; uj ∼ Exp(μ=1/6); Heteroscedasticity: YES; Production function: PF I (Cobb
Douglas with increasing returns to scale), PF II (CRESH), PF III (Translog); Collinearity: 0;
Input distribution: zj ∼ U(5,15); Number of inputs(z): m= 2.

All methods are affected by the presence of heteroscedasticity in inefficiency, but the direction
of the effect is (surprisingly) divergent. In the scenario without noise, the DEA performance is
worse with heteroscedasticity, but in the scenario with a NTS=1 the performance is considerably
better when the inefficiency term is heteroscedastic. Surprisingly, in all settings, SFA MoM and
StoNEDMoM are substantially positively affected by the heteroscedastic inefficiency term. SFA
ML seems to be unaffected in the scenario without noise, but in the scenario with noise, the
performance also improves. StoNED PL is the only method which is consistently negatively
influenced.

Again, these performance variations can be explained by the effect on the MD. A heteroscedas-
tic inefficiency term leads to an increasing MD for all methods. Consequently, the growing
overestimation causes an upward shift of the average estimated efficiency. For methods which
generally underestimate, especially the MoM methods, this precipitates a performance improve-
ment, whereas StoNED PL and DEA in the noise scenario are negatively affected.

4.4 Production Function

4.4.1 Functional Form of the Production Function

The influence of the production function is frequently referred to as important in the literature,
but the variation of production functions under consideration has been limited so far (see Perel-
man and Santin (2009)). For example, Gong and Sickles (1992) use three different production
functions, while Banker et al (1993) use two very similar ones in their MC studies. We use
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three different production functions within our standard settings (PF I, II and III) and extend
the analysis by four additional production functions. Accordingly, we generate the data with
a total of seven different production functions, which vary with respect to returns-to-scale and
flexibility, see Table 10. We first discuss the influence of returns to scale, then the influence of
elasticity of substitution and finally, we compare the results of all settings.

PF Description Parametrization

I Cobb-Douglas, Increasing Return to Scale β1 = β2 = 0.6

I.B Cobb-Douglas, Constant Return to Scale β1 = β2 = 0.5

I.C Cobb-Douglas, Decreasing Return to Scale β1 = β2 = 0.4

II CRESH (Inputsubstitution=0.33) ρ = ρi = 2

II.B CRESH (Inputsubstitution=1.33) ρ = ρi = −0.25

II.C CRESH (Inputsubstitution=3) ρ = ρi = −0.67

III Translog

Table 10: Parametrization of the additional production functions.
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Method
NTS 0 1

DMU 50 100 50 100

DEA PF I Cobb-Douglas (IRS) 0.0314 0.0206 0.1384 0.1729

PF I.B Cobb-Douglas (CRS) 0.0330 0.0220 0.1273 0.1642

PF I.C Cobb-Douglas (DRS) 0.0354 0.0217 0.1326 0.1566

PF II CRESH (Inputsub. = 0.33) 0.0357 0.0232 0.1335 0.1648

PF II.B CRESH (Inputsub. = 1.33) 0.0349 0.0216 0.1317 0.1587

PF II.C CRESH (Inputsub. = 3) 0.0317 0.0201 0.1406 0.1658

PF III Translog 0.0373 0.0326 0.1544 0.1960

SFA MoM PF I Cobb-Douglas (IRS) 0.0688 0.0791 0.0917 0.0987

PF I.B Cobb-Douglas (CRS) 0.0743 0.0719 0.0990 0.0972

PF I.C Cobb-Douglas (DRS) 0.0617 0.0787 0.0933 0.0967

PF II CRESH (Inputsub. = 0.33) 0.0697 0.0737 0.1032 0.1034

PF II.B CRESH (Inputsub. = 1.33) 0.0599 0.0692 0.0996 0.1035

PF II.C CRESH (Inputsub. = 3) 0.0753 0.0761 0.1061 0.1020

PF III Translog 0.0755 0.0811 0.0976 0.0896

SFA ML PF I Cobb-Douglas (IRS) 0.0101 0.0053 0.0949 0.0907

PF I.B Cobb-Douglas (CRS) 0.0094 0.0046 0.1018 0.0902

PF I.C Cobb-Douglas (DRS) 0.0091 0.0046 0.0985 0.0905

PF II CRESH (Inputsub. = 0.33) 0.0344 0.0332 0.1006 0.0912

PF II.B CRESH (Inputsub. = 1.33) 0.0113 0.0078 0.0972 0.0950

PF II.C CRESH (Inputsub. = 3) 0.0186 0.0176 0.1024 0.0910

PF III Translog 0.0130 0.0119 0.0960 0.0894

StoNED MoM PF I Cobb-Douglas (IRS) 0.0676 0.0734 0.0906 0.0980

PF I.B Cobb-Douglas (CRS) 0.0730 0.0693 0.1139 0.0966

PF I.C Cobb-Douglas (DRS) 0.0608 0.0756 0.0941 0.0968

PF II CRESH (Inputsub. = 0.33) 0.0634 0.0674 0.1029 0.1021

PF II.B CRESH (Inputsub. = 1.33) 0.0597 0.0678 0.1019 0.1036

PF II.C CRESH (Inputsub. = 3) 0.0749 0.0735 0.1005 0.1009

PF III Translog 0.0740 0.0799 0.1011 0.0900

StoNED PL PF I Cobb-Douglas (IRS) 0.0466 0.0378 0.0809 0.0749

PF I.B Cobb-Douglas (CRS) 0.0454 0.0361 0.0883 0.0778

PF I.C Cobb-Douglas (DRS) 0.0443 0.0369 0.0788 0.0761

PF II CRESH (Inputsub. = 0.33) 0.0467 0.0368 0.0814 0.0765

PF II.B CRESH (Inputsub. = 1.33) 0.0471 0.0366 0.0831 0.0748

PF II.C CRESH (Inputsub. = 3) 0.0442 0.0355 0.0819 0.0795

PF III Translog 0.0509 0.0414 0.0862 0.0776

Table 11: Variation of the functional form of the production function. Performance
criterion: Mean absolute deviation (MAD). DGP: DMU= 50, 100; Error term: Noise-to-
signal ratio (NTS): 0 and 1; uj ∼ Exp(μ=1/6); Heteroscedasticity: NO; Production function:
See Table 10; Collinearity: 0; Input distribution: zj ∼ U(5,15); Number of inputs(z): m= 2.

For the purpose of measuring the influence of returns to scale, we compare the results of PF
I, I.B and I.C, where PF I has increasing returns to scale of 1.2, PF I.2 has constant returns
to scale and PF I.3 has decreasing returns to scale of 0.8. The results in Table 11 suggest that
there is no significant influence on the methods, but the performance can be affected in specific
settings and the direction is ambiguous. For instance, StoNED MoM is affected in the NTS=1
and 50 DMUs scenario. This is one of the few settings in which the performance of SFA MoM
and StoNED MoM diverge considerably. SFA ML and StoNED PL are not noticeably affected
in any scenario.
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In order to measure the influence of elasticity of substitution, we use three CRESH (II, II.B
and II.C) production functions. The respective functions have an elasticity of substitution of
0.33 (PF II), 1.33 (PF II.B) and 3 (PF II.C). The results suggest that the elasticity of substi-
tution only has an impact on SFA MoM, SFA ML and StoNED MoM in the scenario without
noise. For the SFA, we assume a Cobb-Douglas production function which has an elasticity of
substitution of one. Presumably, this is the reason why SFA performs considerably better, es-
pecially SFA ML, when the elasticity of substitution is close to one in the scenario without noise.

Finally, we compare all the results in Table 11 to analyze the effect of the functional form. Ad-
ditionally to the six production functions described above, we consider our standard translog
production function (PF III). It is surprising that DEA, as a nonparametric method, is affected,
while the SFA, which is misspecified in some settings, is not affected in most of the settings.
DEA performance deteriorates when the data are generated by the translog function. In con-
trast, our results confirm that the semi-parametric StoNED PL is more “successful”, as the
underlying production function has no influence on its performance.

However, the comparison is based on the simple two-input one-output case. The use of more
than two inputs could affect the results on the impact of the functional form. Hence, we analyze
the influence of the number of inputs in the following section.

4.4.2 Number of Inputs

The number of inputs could affect the performance of a given method, because the estimation
of the production function is more challenging with an increasing number of inputs. Our first
step is to vary the number of inputs of the Cobb-Douglas production function (PF I) and keep
the scale elasticity constant, i.e.

∑m
i βi = 1.2.

The results in Table 12 show that the performance of DEA and StoNED PL are influenced
particularly by variations in the number of inputs. The effect on DEA is once again diametrical.
In the settings without noise, the performance deteriorates with an increasing number of inputs,
because the overestimation of DEA increases, i.e. the MD increases (see Table 37 in the
appendix). The opposite is true for the noisy scenarios. This can also be explained by the
MD, because DEA substantially underestimates the efficiency in the scenario with noise and
therefore the “upward shift” caused by the “dimensionality effect” has a positive impact on
average performance.

The positive interaction between the number of inputs and MAD is also observable for the
semi-parametric StoNED and is most pronounced for the change from three to four inputs. In
order to understand the escalating performance deterioration of StoNED, it is helpful to take a
look at MD. The MD indicates that the overestimation of StoNED PL increases constantly with
an increasing number of inputs. Furthermore, the mean rank correlation of StoNED decreases
dramatically (see Table 39). The analysis demonstrates that in particular, the consideration of
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four inputs exerts a crucial impact on the performance of nonparametric and semi-parametric
methods, whereas the parametric methods are less affected.

Method
NTS 0 1

DMU 50 100 50 100

DEA PF I.1 (1 Input) 0.0139 0.0108 0.1716 0.2087

PF I.2 (2 Inputs) 0.0314 0.0206 0.1384 0.1729

PF I.3 (3 Inputs) 0.0547 0.0406 0.1234 0.1409

PF I.4 (4 Inputs) 0.0704 0.0588 0.1065 0.1231

SFA MoM PF I.1 (1 Input) 0.0585 0.0679 0.1081 0.1103

PF I.2 (2 Inputs) 0.0688 0.0791 0.0917 0.0987

PF I.3 (3 Inputs) 0.0623 0.0674 0.0908 0.0943

PF I.4 (4 Inputs) 0.0606 0.0598 0.0962 0.1035

SFA ML PF I.1 (1 Input) 0.0066 0.0036 0.1012 0.0973

PF I.2 (2 Inputs) 0.0101 0.0053 0.0949 0.0907

PF I.3 (3 Inputs) 0.0138 0.0061 0.1050 0.0939

PF I.4 (4 Inputs) 0.0150 0.0082 0.1052 0.0958

StoNED MoM PF I.1 (1 Input) 0.0619 0.0686 0.1095 0.1107

PF I.2 (2 Inputs) 0.0676 0.0734 0.0906 0.0980

PF I.3 (3 Inputs) 0.0635 0.0674 0.0919 0.0940

PF I.4 (4 Inputs) 0.0922 0.0854 0.1019 0.1046

StoNED PL PF I.1 (1 Input) 0.0313 0.0272 0.0803 0.0755

PF I.2 (2 Inputs) 0.0466 0.0378 0.0809 0.0749

PF I.3 (3 Inputs) 0.0597 0.0517 0.0877 0.0796

PF I.4 (4 Inputs) 0.1161 0.1053 0.1219 0.1140

Table 12: Variation of the number of inputs. Performance criterion: Mean absolute
deviation (MAD). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio (NTS): 0 and
1; uj ∼ Exp(μ=1/6); Heteroscedasticity: NO; Production function: PF I (Cobb Douglas with
increasing returns to scale); Collinearity: 0; Input distribution: zj ∼ U(5,15); Number of
inputs(z): m= 1, 2, 3 and 4.

Our second step is to focus on the four input case, but to consider more functional forms to
evaluate if the functional form, in conjunction with a higher number of inputs, has an influence
on the method performance. Therefore, we add a Cobb Douglas production function with
decreasing returns to scale (PF I.C.4), as well as a CRESH (PF II.4) and a translog (PF III.4)
production function. This is of particular interest for the parametric methods, because it can
be expected that misspecification is more serious if a flexible functional form, such as translog,
is used to generate the data in a multiple-input case. The parametrization for the production
functions can be found in Table 13.
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Nr PF (F(x)) Description Parametrization

I.4
∑m

i=1 βi · ln(zi,j) Cobb-Douglas, IRS βi = 0.3 for i=1,...,4.

I.C.4
∑m

i=1 βi · ln(zi,j) Cobb-Douglas, DRS βi = 0.2 for i=1,...,4.

II.4 ln( [
∑m

i=1 αi · z−ρi
i,j ]−δ/ρ) CRESH δ=1, αi = 0.25, ρ=ρi=2 for i=1,...,4

III.4
β0 +

∑m
i=1 βi · ln(zi,j) + 0.5 ·∑m

i=1

∑m
f=1 βi,f · ln(zi,j) · ln(zi,j) Translog

β0=1, βi = 0.15, βi,f = 0.025 for
i,f=1,...4

Table 13: Parametrization of the production functions (Four inputs).

The results in Table 14 confirm that the misspecification of the functional form can exert a
negative influence on the performance of SFA ML, for example, in the case of a CRESH pro-
duction function and the scenario without noise. However, in the scenario without noise, SFA
ML is considerably better than the semi-parametric methods, regardless of which production
function is used. Considering the noise scenario, the performance of all methods becomes quite
similar, but StoNED PL is still the weakest method especially when the number of DMU is
small. In summary, as also stated by Kuosmanen (2008), the flexibility of the semi-parametric
approach does have a price. The performance, in particular of StoNED PL, deteriorates when
more explanatory variables are considered, keeping the number of DMUs constant.

Method
NTS 0 1

DMU 50 100 50 100

DEA PF I.4 Cobb-Douglas (IRS) 0.0704 0.0588 0.1065 0.1231

PF I.C.4 Cobb-Douglas (DRS) 0.0714 0.0523 0.1091 0.1225

PF II.4 CRESH 0.0739 0.0618 0.1018 0.1215

PF III.4 Translog 0.0668 0.0518 0.1112 0.1348

SFA MoM PF I.4 Cobb-Douglas (IRS) 0.0606 0.0598 0.0962 0.1035

PF I.C.4 Cobb-Douglas (DRS) 0.0747 0.0726 0.0906 0.1002

PF II.4 CRESH 0.0618 0.0745 0.1000 0.1005

PF III.4 Translog 0.0663 0.0800 0.0925 0.0951

SFA ML PF I.4 Cobb-Douglas (IRS) 0.0150 0.0082 0.1052 0.0958

PF I.C.4 Cobb-Douglas (DRS) 0.0171 0.0074 0.1015 0.0995

PF II.4 CRESH 0.0368 0.0357 0.1105 0.0949

PF III.4 Translog 0.0175 0.0094 0.1023 0.0889

StoNED MoM PF I.4 Cobb-Douglas (IRS) 0.0922 0.0854 0.1019 0.1046

PF I.C.4 Cobb-Douglas (DRS) 0.0944 0.0866 0.0951 0.1017

PF II.4 CRESH 0.0867 0.0852 0.0967 0.1007

PF III.4 Translog 0.0852 0.0872 0.0973 0.0969

StoNED PL PF I.4 Cobb-Douglas (IRS) 0.1161 0.1053 0.1219 0.1140

PF I.C.4 Cobb-Douglas (DRS) 0.1119 0.0934 0.1134 0.1095

PF II.4 CRESH 0.1122 0.1010 0.1125 0.1072

PF III.4 Translog 0.1130 0.1009 0.1119 0.1052

Table 14: Variation of the functional form of the production function (Four inputs).
Performance criterion: Mean absolute deviation (MAD). DGP: DMU= 50, 100; Error
term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(μ=1/6); Heteroscedasticity: NO; Pro-
duction function: See Table 13; Collinearity: 0; Input distribution: zj ∼ U(5,15); Number of
inputs(z): m= 4.
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4.4.3 Omitted Variables

In real-world applications, one of the most important problems is the consideration of the
“true” production process. It is not only necessary to replicate the “true” functional form of
the production function, but also to include all relevant inputs and outputs. The determination
of the relevant inputs and outputs can be challenging. Good examples for this problem are
the banking and the electricity sector. Jamasb and Pollitt (2001) present an overview of 20
empirical efficiency studies for electricity distribution utilities and the frequency of the different
in- and outputs that are used within the studies. Interestingly, the variables differ considerably,
although all of them in principle analyze the same context. Furthermore, some variables are
even used as “inputs” as well as “outputs,” depending on the study. For the banking sector,
for instance, Bauer et al (1998) state that there is considerable variation within the literature
and that many studies use other bank outputs, inputs, bank characteristics and environmental
factors.

Method
NTS 0 1 0 1

DMU 50 100 50 100 50 100 50 100

DEA PF I.4 Cobb-Douglas (IRS) 0.0644 0.0648 0.1290 0.1578 0.0704 0.0588 0.1065 0.1231

PF I.C.4 Cobb-Douglas (DRS) 0.0537 0.0486 0.1325 0.1504 0.0714 0.0523 0.1091 0.1225

PF II.4 CRESH 0.0662 0.0598 0.1279 0.1622 0.0739 0.0618 0.1018 0.1215

PF III.4 Translog 0.0798 0.0796 0.1444 0.1731 0.0668 0.0518 0.1112 0.1348

SFA MoM PF I.4 Cobb-Douglas (IRS) 0.0857 0.0865 0.0983 0.1033 0.0606 0.0598 0.0962 0.1035

PF I.C.4 Cobb-Douglas (DRS) 0.0767 0.0766 0.0977 0.0966 0.0747 0.0726 0.0906 0.1002

PF II.4 CRESH 0.0811 0.0876 0.1078 0.1016 0.0618 0.0745 0.1000 0.1005

PF III.4 Translog 0.0896 0.0878 0.1101 0.1092 0.0663 0.0800 0.0925 0.0951

SFA ML PF I.4 Cobb-Douglas (IRS) 0.0676 0.0698 0.1062 0.1023 0.0150 0.0082 0.1052 0.0958

PF I.C.4 Cobb-Douglas (DRS) 0.0505 0.0487 0.1072 0.0933 0.0171 0.0074 0.1015 0.0995

PF II.4 CRESH 0.0678 0.0683 0.1189 0.0955 0.0368 0.0357 0.1105 0.0949

PF III.4 Translog 0.0888 0.0827 0.1231 0.1057 0.0175 0.0094 0.1023 0.0889

StoNED MoM PF I.4 Cobb-Douglas (IRS) 0.0820 0.0841 0.0984 0.1036 0.0922 0.0854 0.1019 0.1046

PF I.C.4 Cobb-Douglas (DRS) 0.0731 0.0798 0.0959 0.0975 0.0944 0.0866 0.0951 0.1017

PF II.4 CRESH 0.0846 0.0855 0.1088 0.1038 0.0867 0.0852 0.0967 0.1007

PF III.4 Translog 0.0904 0.0911 0.1093 0.1131 0.0852 0.0872 0.0973 0.0969

StoNED PL PF I.4 Cobb-Douglas (IRS) 0.0681 0.0680 0.0865 0.0823 0.1161 0.1053 0.1219 0.1140

PF I.C.4 Cobb-Douglas (DRS) 0.0632 0.0645 0.0851 0.0829 0.1119 0.0934 0.1134 0.1095

PF II.4 CRESH 0.0704 0.0648 0.0857 0.0798 0.1122 0.1010 0.1125 0.1072

PF III.4 Translog 0.0723 0.0765 0.0918 0.0876 0.1130 0.1009 0.1119 0.1052

Table 15: Omitted Variables. Performance criterion: Mean absolute deviation
(MAD). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼
Exp(μ=1/6); Heteroscedasticity: NO; Production function: See Table 13; Collinearity: 0; In-
put distribution: zj ∼ U(5,15); Number of inputs(z) within the DGP (efficiency estimation):
m= 4 (3).

In our analysis we account for this problem by deliberately omitting variables while estimating
the efficiency. We assume a data generating process with four inputs as in the previous section,
but consider only three inputs in the application of the methods. This enables us to identify
how the methods performance is influenced by this misspecification error.
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Table 15 shows the results. These results should be compared with the results in Table 14,
which is the point of reference. To simplify the comparison, the results of Table 14 are denoted
in italic numbers in Table 15. If only the MAD is considered as performance criterion, the
effect of omitted variables seems to be complex and ambiguous. Here, it is again worthwhile
to consider the MD because it shows that the general effect is for most methods unambiguous
and as one might expect: The omission of an input tends to result in an underestimation of the
“true” efficiency, i.e. the MD is lower than in the case when all relevant inputs are considered
(see Table 43 in the appendix). This result is true for almost all settings and methods, except
for the SFA MoM. DEA and StoNED seem to be particularly affected by this “omission effect”.
The underestimation caused by the “omission effect” leads to ambiguous effects for the MAD,
our main performance criterion, due to the point of reference. The point of reference are the
results of Table 14: settings with four inputs and all inputs are considered within the estimation.
Therefore, it is important to consider the associated under- vs. overestimation constellation in
these settings.

As explained in Section 4.4.2, the consideration of four inputs causes a ”‘dimensionality effect”’
that induces an overestimation, whereas the “omission effect” induces an underestimation so
that the two effects tend to cancel each other out. This is the reason why for some of the methods
and settings, against expectations, the performance improves when omitting variables. This
is especially of relevance for the StoNED PL; its MAD decreases considerably. However, the
MD shows that it still overestimates the efficiency on average, but the bias is much lower than
before. In contrast, the MAD of SFA MoM and SFA ML increases for most of the settings,
especially in the settings without noise. For the DEA it is conspicuous that the MAD increases
in the scenario with noise. Here, the underestimation of the efficiency increases considerably.

In brief, this analysis demonstrates once again that the inspection of only one performance
criterion, in our case the MAD, is in certain circumstances insufficient. The examination of the
MAD does not show the underlying effects because two effects counteract. By looking at the
MD, it is obvious that the omission of a relevant variable leads to an underestimation of the
efficiency for most of the methods. To analyze the “omission effect” in more detail, we conduct
the same experiment with two inputs, but consider only one input for the estimation of the
efficiency. Thereby, we focus on the “omission effect” and avoid the “dimensionality problem”.
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Method
NTS 0 1 0 1

DMU 50 100 50 100 50 100 50 100

DEA PF I Cobb-Douglas (IRS) 0.1419 0.1527 0.2380 0.2675 0.0314 0.0206 0.1384 0.1729

PF II CRESH 0.1156 0.1198 0.2244 0.2548 0.0357 0.0232 0.1335 0.1648

PF III Translog 0.1855 0.2001 0.2647 0.2923 0.0373 0.0326 0.1544 0.1960

SFA MoM PF I Cobb-Douglas (IRS) 0.1100 0.1046 0.1168 0.1123 0.0688 0.0791 0.0917 0.0987

PF II CRESH 0.1007 0.1049 0.1214 0.1208 0.0697 0.0737 0.1032 0.1034

PF III Translog 0.1142 0.1245 0.1252 0.1210 0.0755 0.0811 0.0976 0.0896

SFA ML PF I Cobb-Douglas (IRS) 0.1237 0.1267 0.1260 0.1205 0.0101 0.0053 0.0949 0.0907

PF II CRESH 0.1128 0.1163 0.1337 0.1266 0.0344 0.0332 0.1006 0.0912

PF III Translog 0.1457 0.1621 0.1431 0.1393 0.0130 0.0119 0.0960 0.0894

StoNED MoM PF I Cobb-Douglas (IRS) 0.1095 0.1038 0.1180 0.1118 0.0676 0.0734 0.0906 0.0980

PF II CRESH 0.1002 0.1028 0.1199 0.1195 0.0634 0.0674 0.1029 0.1021

PF III Translog 0.1143 0.1250 0.1264 0.1218 0.0740 0.0799 0.1011 0.0900

StoNED PL PF I Cobb-Douglas (IRS) 0.0921 0.0830 0.0971 0.0871 0.0466 0.0378 0.0809 0.0749

PF II CRESH 0.0867 0.0795 0.0971 0.0921 0.0467 0.0368 0.0814 0.0765

PF III Translog 0.0962 0.1020 0.1036 0.0990 0.0509 0.0414 0.0862 0.0776

Table 16: Omitted Variables. Performance criterion: Mean absolute deviation
(MAD). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼
Exp(μ=1/6); Heteroscedasticity: NO; Production function: PF I (Cobb Douglas with increas-
ing returns to scale), PF II (CRESH), PF III (Translog); Collinearity: 0; Input distribution:
zj ∼ U(5,15); Number of inputs(z) within the DGP (efficiency estimation): m= 2 (1).

The results in Table 16 show a clear effect on the MAD. All methods perform considerably worse
when the second input is not considered in the estimation. We can see further that the relative
performance of the methods changes. The DEA is the method that is most affected. The
reason is that DEA does not consider random noise, which partly covers the “omission effect”
for the stochastic methods. Furthermore, the technique to estimate the underlying production
function seems to influence the performance of the stochastic methods. The SFA ML is more
negatively affected than the MoM methods and the StoNED PL. For both scenarios (with and
without noise) the order of the methods is from best to worst: StoNED PL, StoNED MoM, SFA
MoM, SFA ML and DEA. The reason for the performance deterioration can be traced back to
the underestimation caused by the “omission effect”. The MD for all methods decreases, but
for SFA and especially DEA the effect is stronger (see Table 46). In addition, the mean rank
correlation (MRC) for all methods decreases dramatically, see Table 48.

4.4.4 Collinearity

A further factor considered in studies comparing efficiency methods is the collinearity between
inputs (see, for example, Jensen (2005)). Andor and Hesse (2011) assumed that correlation
is between 0 and 0.9. However, it might be more interesting to consider cases with an even
higher correlation between the inputs. Therefore, we only use extreme values for the collinear-
ity, namely ρcoll(z1,z2)=0.0, 0.9 and 0.99.

The results suggest that DEA is the only method which is considerably influenced by collinearity
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(see Table 17). The reason is that increasing collinearity leads to a greater underestimation
of DEA. As a result, it is, once again, diametrically affected. For the scenario without noise
(except PF III), it is positively affected, while the opposite applies to the noise scenario. SFA
MoM and StoNED MoM seem to be unaffected. Also, SFA ML is mainly unaffected, but
in the scenario without noise, the performance improves with increasing collinearity, when the
underlying production function is PF II. StoNED PL exhibits a performance improvement with
increasing collinearity for the scenario without noise. Nevertheless, considering extreme values
for the collinearity, we can conclude that the various methods – except DEA – are not influenced
substantially. These findings concur with Jensen (2005), who concludes that collinearity has
no influence on the performance of SFA ML.

Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA ρ=0.00 0.0314 0.0357 0.0373 0.0206 0.0232 0.0326 0.1384 0.1335 0.1544 0.1729 0.1648 0.1960

ρ=0.90 0.0219 0.0255 0.0456 0.0138 0.0160 0.0491 0.1562 0.1469 0.1892 0.1890 0.1760 0.2262

ρ=0.99 0.0174 0.0214 0.0511 0.0115 0.0126 0.0563 0.1732 0.1617 0.2170 0.1980 0.1835 0.2379

SFA MoM ρ=0.00 0.0688 0.0697 0.0755 0.0791 0.0737 0.0811 0.0917 0.1032 0.0976 0.0987 0.1034 0.0896

ρ=0.90 0.0679 0.0626 0.0704 0.0679 0.0693 0.0721 0.1048 0.0901 0.0965 0.0981 0.1050 0.0949

ρ=0.99 0.0680 0.0643 0.0754 0.0709 0.0753 0.0799 0.0980 0.0972 0.0964 0.1022 0.0927 0.0990

SFA ML ρ=0.00 0.0101 0.0344 0.0130 0.0053 0.0332 0.0119 0.0949 0.1006 0.0960 0.0907 0.0912 0.0894

ρ=0.90 0.0084 0.0107 0.0141 0.0048 0.0060 0.0125 0.1086 0.0956 0.1097 0.0939 0.0960 0.0907

ρ=0.99 0.0093 0.0093 0.0156 0.0050 0.0048 0.0142 0.0979 0.1013 0.0968 0.0931 0.0875 0.0897

StoNED MoM ρ=0.00 0.0676 0.0634 0.0740 0.0734 0.0674 0.0799 0.0906 0.1029 0.1011 0.0980 0.1021 0.0900

ρ=0.90 0.0701 0.0615 0.0741 0.0660 0.0688 0.0747 0.1055 0.0916 0.0966 0.0992 0.1053 0.0974

ρ=0.99 0.0690 0.0641 0.0816 0.0676 0.0734 0.0826 0.0987 0.0982 0.1002 0.1024 0.0932 0.1005

StoNED PL ρ=0.00 0.0466 0.0467 0.0509 0.0378 0.0368 0.0414 0.0809 0.0814 0.0862 0.0749 0.0765 0.0776

ρ=0.90 0.0417 0.0382 0.0473 0.0313 0.0302 0.0403 0.0849 0.0798 0.0887 0.0791 0.0765 0.0752

ρ=0.99 0.0360 0.0326 0.0461 0.0314 0.0299 0.0433 0.0795 0.0782 0.0835 0.0731 0.0778 0.0762

Table 17: Variation of collinearity between the inputs. Performance criterion: Mean
absolute deviation (MAD). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio (NTS):
0 and 1; uj ∼ Exp(μ=1/6); Heteroscedasticity: NO; Production function: PF I (Cobb Douglas
with increasing returns to scale), PF II (CRESH), PF III (Translog); Collinearity: 0, 0.9, 0.99;
Input distribution: zj ∼ U(5,15); Number of inputs(z): m= 2.

4.4.5 Input distribution

Most simulation studies use uniform or normal distributions to generate the inputs. In fact,
real-world input distributions are usually different with regard to the standard deviation and
skewness of the distribution. For instance, Resti (2000) justifies his use of a skewed input
distribution by the fact that there are usually more small and medium-sized companies than
large ones and that an unrealistic assumption could influence the performance of the methods.
However, in contrast to Resti (2000), we vary the input distribution and are therefore able to
evaluate the influence. We use normal, gamma and uniform distributions, which differ regarding
the standard deviation and the skewness (see Table 18).
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Distribution Mean σ Skewness

z1,2 ∼ N(10, 1) 10 1.00 0.00

z1,2 ∼ Gamma(100, 0.1) 10 1.00 0.20

z1,2 ∼ U(5, 10) 10 2.90 0.00

z1,2 ∼ Gamma(10, 1) 10 3.15 0.62

Table 18: Variation of the input distribution and their respective moments.

In general, the results suggest that the input distribution can exert an impact on the perfor-
mance of all methods, but only in specific settings (see Table 19). For SFA MoM and StoNED
MoM, it is difficult to identify a systematic pattern. For DEA, the performance deteriorates
with an increasing standard deviation in the scenario without noise. This effect is notably sig-
nificant for the translog function (PF III). For instance, the DEA MAD is more than twice as
high than in comparable settings. The same effect, increasing MAD for an increasing standard
deviation, is observable for the SFA ML in cases with a high standard deviation in combina-
tion with a misspecification of the production function (PF II, III). The analysis of the input
distribution supports the supposition of Resti (2000) that the input distribution can have an
influence on the performance of the methods, but it depends on the specifications of the other
influencing factors and has only a minor impact in comparison to the other influencing factors.
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Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA z1,2 ∼ N(10, 1) 0.0212 0.0241 0.0203 0.0142 0.0151 0.0146 0.1687 0.1629 0.1665 0.1952 0.1937 0.2029

z1,2 ∼ G(100, 0.1) 0.0216 0.0229 0.0213 0.0149 0.0158 0.0139 0.1649 0.1783 0.1731 0.2100 0.1927 0.2005

z1,2 ∼ U(1, 15) 0.0314 0.0357 0.0373 0.0206 0.0232 0.0326 0.1384 0.1335 0.1544 0.1729 0.1648 0.1960

z1,2 ∼ G(10, 1) 0.0343 0.0410 0.0437 0.0229 0.0260 0.0504 0.1418 0.1290 0.1628 0.1681 0.1588 0.1987

SFA MoM z1,2 ∼ N(10, 1) 0.0598 0.0635 0.0653 0.0746 0.0712 0.0805 0.1032 0.0936 0.0982 0.0934 0.0982 0.1018

z1,2 ∼ G(100, 0.1) 0.0585 0.0841 0.0726 0.0689 0.0714 0.0770 0.1019 0.1050 0.0994 0.0896 0.0991 0.0998

z1,2 ∼ U(1, 15) 0.0688 0.0697 0.0755 0.0791 0.0737 0.0811 0.0917 0.1032 0.0976 0.0987 0.1034 0.0896

z1,2 ∼ G(10, 1) 0.0593 0.0707 0.0674 0.0725 0.0785 0.0749 0.1078 0.1030 0.0940 0.0961 0.1074 0.1008

SFA ML z1,2 ∼ N(10, 1) 0.0098 0.0121 0.0091 0.0048 0.0069 0.0052 0.0998 0.0989 0.0993 0.0891 0.0911 0.0924

z1,2 ∼ G(100, 0.1) 0.0092 0.0108 0.0094 0.0049 0.0066 0.0044 0.1026 0.1042 0.1005 0.0872 0.0967 0.0933

z1,2 ∼ U(1, 15) 0.0101 0.0344 0.0130 0.0053 0.0332 0.0119 0.0949 0.1006 0.0960 0.0907 0.0912 0.0894

z1,2 ∼ G(10, 1) 0.0099 0.0372 0.0155 0.0060 0.0360 0.0136 0.1001 0.1065 0.0964 0.0867 0.1013 0.0915

StoNED MoM z1,2 ∼ N(10, 1) 0.0608 0.0628 0.0669 0.0743 0.0696 0.0789 0.1018 0.0936 0.0991 0.0948 0.0973 0.1019

z1,2 ∼ G(100, 0.1) 0.0605 0.0806 0.0700 0.0674 0.0710 0.0765 0.1027 0.1047 0.1014 0.0909 0.1000 0.0988

z1,2 ∼ U(1, 15) 0.0676 0.0634 0.0740 0.0734 0.0674 0.0799 0.0906 0.1029 0.1011 0.0980 0.1021 0.0900

z1,2 ∼ G(10, 1) 0.0608 0.0629 0.0696 0.0718 0.0697 0.0756 0.1086 0.1033 0.0959 0.0989 0.1030 0.1033

StoNED PL z1,2 ∼ N(10, 1) 0.0356 0.0332 0.0372 0.0295 0.0298 0.0328 0.0811 0.0806 0.0809 0.0779 0.0769 0.0768

z1,2 ∼ G(100, 0.1) 0.0350 0.0385 0.0374 0.0290 0.0294 0.0300 0.0870 0.0872 0.0788 0.0767 0.0782 0.0784

z1,2 ∼ U(1, 15) 0.0466 0.0467 0.0509 0.0378 0.0368 0.0414 0.0809 0.0814 0.0862 0.0749 0.0765 0.0776

z1,2 ∼ G(10, 1) 0.0437 0.0466 0.0502 0.0348 0.0363 0.0450 0.0878 0.0812 0.0843 0.0725 0.0742 0.0759

Table 19: Variation of the input distribution. Performance criterion: Mean abso-
lute deviation (MAD). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio (NTS): 0
and 1; uj ∼ Exp(μ=1/6); Heteroscedasticity: NO; Production function: PF I (Cobb Douglas
with increasing returns to scale), PF II (CRESH), PF III (Translog); Collinearity: 0; Input
distribution: See Table 18; Number of inputs(z): m= 2.

4.5 Overview effects

Finally, Table 20 summarizes the main conclusions of the analysis of the influencing factors.
To avoid a misleading interpretation of Table 20, it is important to reference the legend. For
instance, a “+” for the MAD symbolizes a performance deterioration, whereas a “+” for the
MRC signifies a performance improvement. The most important part of our study is without
doubt the analysis of the recently introduced StoNED. Hence, we now focus on the influencing
factors of StoNED. StoNED MoM generally performs in a very similar manner to SFA MoM.
The noise-to-signal ratio, the sample size and the skewness of the inefficiency distribution have
a negative impact on it, particularly in the scenario without noise. The comparative advantage
of the MOM methods is the ability to handle a heteroscedastic inefficiency term. In short, our
results suggest that the StoNED MoM does not seem to constitute a substantial advancement
in efficiency estimation, as it behaves very similar to the SFA MoM, without offering any
compelling advantages.

However, the StoNED PL seems to constitute progress in efficiency estimation, as it has an
important unique comparative advantage. StoNED PL is the best method if a high noise-
to-signal ratio is assumed. Furthermore, the performance of StoNED PL is less affected by
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omitting relevant inputs than the other methods. In contrast, the curse of dimensionality (a
larger number of inputs) and scenarios without noise, are weaknesses of the StoNED PL, in
comparison to the other methods.

DEA SFA MoM SFA ML StoNED MoM StoNED PL

Influencing factor MAD MD Rc MAD MD Rc MAD MD Rc MAD MD Rc MAD MD Rc

Sample size (Section 4.2) - /+ - + + / o - + - - + +o/o o o o o o

Noise-to-signal (NTS) (Section 4.3.1) + - - + +o - + o - + o - + +o -

Distribution inefficiency (Section 4.3.2) -/+ - o +/o - -/o o - -/o +/o+ - -/o - - -/o

Heteroscedasticity (Section 4.3.3) +/- + =/+ - + - / + =+/- + o/+ - + -/+ + + -/+

Number of Inputs (Section 4.4.2) +/- + -/o o o -/o =+/=o =+/o =o/o +o/o + - + + -

Omitted Variables (Section 4.4.3) + - - + - - + - - + - - + - -

Collinearity (Section 4.4.4) o/+ - o =/o= o o o=/= o o =/o= o +/o -o/= o +/o

Distribtuion inputs (Section 4.4.5) +/o o -/o o/=o o o o+/=o =o/o o =o =o/o o o/= o=/o o

Table 20: Overview of influencing factors on methods performance. Legend: The
meaning of the symbols are the following: (+) increasing, (-) decreasing, (o) ambiguous effect
and (=) no considerable effect. If the results depend on the noise-to-signal ratio the sign in
front of a slash (/) refers to the without noise scenario (NTS=0), whereas the sign after the
slash refers to the noise scenario (NTS=1). If there are two symbols, both are valid in specific
settings.

4.6 Performance in terms of the estimated production frontier

So far, we have only considered the estimation of the technical efficiency value as a performance
measure. All performance criteria – MAD, MSE, MD and MRC – are measured in terms of
the ability of the method to estimate the efficiency value TE. From our point of view, this is
the most relevant performance benchmark, because the technical efficiency is still used in most
efficiency analysis studies and in real-world applications. However, for the stochastic SFA and
StoNED, we apply the Battese and Coelli (1988) point estimator, see equations (9) and (10).
As mentioned above, this estimator is known to be inconsistent, whereas the SFA and StoNED
estimators for the frontier F are unbiased and consistent. Hence, it can make sense to estimate
“only” the frontier F and use these estimates. For instance, the regulatory model in Finland,
which was based on the JMLS estimator until 2011, changed so that the StoNED estimator
used since 2012 is based on the frontier F . The regulatory model changed because the estimate
of the frontier F should be a more reliable benchmark than the firm-specific TE estimates (cf.
Kuosmanen (2012a)). However, the other European electricity regulation systems still rely on
the firm-specific efficiency estimator. Nevertheless, we discuss in the following the performance
of the methods in terms of the estimation of frontier F for our standard settings.

We thus redefine the mean absolute deviation (MAD) as follows:

MAD =
1

nR

R∑
r=1

n∑
j=1

m∑
i=1

∣∣∣F̂r(zi,j)− F (zi,j)
∣∣∣ , (25)
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where F̂r and Fr are the estimated production value and the true production value, respectively,
and r = 1, ..., R is the number of replications of a setting.

NTS 0 1

DMU 50 100 50 100

Method PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA 0.5538 0.3656 1.3369 0.3648 0.2411 1.1595 2.5996 1.4510 5.7619 3.8680 2.1797 8.6428

SFA MOM 2.4523 1.4379 4.7802 2.3887 1.4489 4.6935 2.2916 1.5304 5.0062 2.3803 1.4544 4.7853

SFA ML 0.1815 0.3669 0.4625 0.0948 0.3539 0.4178 1.3312 0.9010 2.9745 1.3508 0.7931 2.3843

STONED 2.4505 1.4080 4.8189 2.3888 1.4269 4.7500 2.2885 1.4959 5.0467 2.3803 1.4290 4.8400

Table 21: Variation of performance measure - F (xi,j) instead of TE. Performance
criterion: Mean absolute deviation (MAD). DGP: DMU= 50, 100; Error term: Noise-to-
signal ratio (NTS): 0 and 1; uj ∼ Exp(μ=1/6); Heteroscedasticity: NO; Production function:
PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH), PF III (Translog);
Collinearity: 0; zj ∼ U(5,15); Number of inputs(z): m=2.

Table 21 shows the mean absolute deviation between the estimated production function value
and the “true” value. The results show that SFA ML is still the best method, independent of
the underlying setting. Again, DEA performs very well in the scenario without noise, whereas it
is the worst method in the scenario with noise. StoNED and SFA MoM obtain relatively similar
results. The results support our supposition that the strength of the StoNED PL relies more
in the ability to distinguish between noise and inefficiency by means of the pseudolikelihood
estimator than in the estimation of the production function.

5 Conclusions

In this simulation study, we compared the StoNED method, recently introduced by Kuosma-
nen and Kortelainen (2010), with the two most popular estimation methods, or rather the
two “oldies” DEA and SFA. Our research objective was a systematic comparison of the three
methods and the two different estimation techniques (method of moments and likelihood), us-
ing cross sectional data. Accordingly, we analyzed the performance of DEA, SFA MoM, SFA
ML, StoNED MoM and StoNED PL in a Monte Carlo simulation. By using 200 different set-
tings, we identified factors influencing the performance of the particular method and derive
recommendations for practical applications.

The main findings can be summarized as follows. The likelihood estimation techniques, and
especially the SFA ML, perform best in our study. The StoNED PL is a serious competitor for
SFA ML and has its comparative advantage in an increasing noise-to-signal ratio. Addition-
ally, the performance of StoNED PL is less affected by omitting relevant inputs than the other
methods. Furthermore, our analysis reveals a specific characteristic of the StoNED PL. While
all other methods underestimate efficiency, StoNED PL is the only method that overestimates
on average. This finding can partly explain the performance of StoNED and could be useful to
policy makers. For instance, in the German incentive regulation of electricity grid operators,
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the best-of-two-method is applied, meaning that the highest of the estimates of DEA and SFA
is used as the efficiency value, so as to avoid underestimating the efficiency of grid operators.
The relatively good performance of StoNED PL, in conjunction with a bias to overestimate the
efficiency, seems a good argument for applying StoNED PL for this purpose. A disadvantage for
the application in the real-world is the diminishing performance of StoNED for an increasing
number of inputs. Nevertheless, an evaluation of the methods depends on the specific per-
formance criterion. While StoNED PL and SFA ML achieve similar performance with regard
to MAD and MSE, the consideration of rank correlation leads to a different conclusion. As
StoNED is the poorest method under the latter performance criterion in our study, the ranking
accuracy seems to constitute a weakness of StoNED. In general, our results indicate that the
strength of the StoNED PL relies more in the ability to distinguish between noise and inef-
ficiency by means of the pseudolikelihood estimator than in the estimation of the production
function.

Using the method of moments as estimation technique, the performance of SFA and StoNED are
generally similar. The switch between SFA MoM and StoNED MoM, namely the methodology
change of the production function estimation from OLS to CNLS, does not seem to be promising.
In particular, StoNED has the disadvantage of a lower rank correlation. However, the MoM
estimation technique is advisable when a heteroscedastic inefficiency term has to be considered.
To cope with the deterministic of DEA, we also considered a nondiscriminatory subsample of 94
settings without noise. Indeed, in this subsample, DEA and SFA perform best. Summarizing,
while in scenarios without noise, the “battle” is still between the “oldies”, in noisy scenarios,
the nonparametric StoNED PL is a promising alternative to the SFA ML.

Our conclusions have, like every Monte Carlo simulation, some limitations, because they are
only valid under the considered assumptions. The results show that the relative advantageous-
ness of a method critically depends on the underlying assumptions. As a result, we would like
to advice for practical applications to conduct a Monte Carlo simulation under the concrete
real-world conditions, before deciding for an estimation method. For instance, the number of
DMUs, the input distribution as well as the number of inputs are observable, whereas one has
to define adequate assumptions about, for example, the distribution of the inefficiency as well
as the noise term. Of course, the conduction of a Monte Carlo simulation with all methods is
laborious. However, at least for regulator who derives financial objectives for regulated firms
from efficiency benchmarks, the effort should be worthwhile. For practitioners who cannot con-
duct their own MC study, theoretical MC studies which consider a wide variety of assumptions
can serve as a guideline. Accordingly, our study can be seen as a first step in indicating a range
of specific situations in which one of the five considered estimation methods proves superior,
but further research is needed.

This study focused on the single-input multiple-output case. An MC study considering the
multiple-input multiple-output case could be of interest, as policy makers in the real world
often face this problem (cf. Perelman and Santin (2009)). Furthermore, this is one of the main
advantages of DEA. However, for this purpose, a multiple-output model for StoNED has to be
developed. Further research objectives for StoNED can be found in Kuosmanen and Kortelainen
(2010). Finally, future research should consider how StoNED performs in comparison to other
approaches, which combine the advantages of parametric and nonparametric methods. For

38



instance, Badunenko et al (2011) compare the nonparametric kernel SFA estimator of Fan et al
(1996) to the nonparametric bias-corrected DEA estimator of Kneip et al (2008). A comparison
of these methods with StoNED would surely be worth conducting.

6 Appendix

The appendix can be found online at: http://www.rwi-essen.de/media/content/pages/publika-
tionen/ruhr-economic-papers/REP 12 394 appendix.pdf.
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