
RUHR
ECONOMIC PAPERS

Does Monetary Policy Aff ect
Stock Market Uncertainty?
Empirical Evidence from the United States

#240

Mario Jovanović
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Abstract
This paper investigates the response of US stock market uncertainty to monetary 
policy of the Federal Reserve Bank. It can be shown that monetary policy signifi cantly 
Granger-causes stock market confi dence. By using monthly closing prices of the V IX 
as a stock market uncertainty proxy and a copula-based Markov approach the stable 
nonlinear relation between confi dence and uncertainty is demonstrated. The monetary 
policy eff ect on stock market uncertainty is therefore separable into a linear and 
nonlinear part.
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1 Introduction

Missing confidence was the core problem of the latest financial market crisis
and has refuelled the discussion about the behavioral channel of monetary
policy. Rajan (2006) argue informally that low interest rate policies con-
ducted by a central bank may shift the investment behavior of investors to
risky strategies. This monetary policy transmission can lead to financial in-
stability and can affect stock market uncertainty. Regarding this literature
Bekaert and Hoerova (2010) investigate the direct effect of monetary policy
on stock market uncertainty, which seems to be insignificant. However, they
derive a link between monetary policy and risk aversion, which potentially
affects stock market uncertainty. Hence, it is an unsolved question in mon-
etary economics, if monetary policy affects stock market uncertainty. The
aim of this paper is to answer this open question and to derive empirical
evidence of the existence of a behavioral channel of monetary policy. The
existence of the behavioral channel leads to the conclusion that the Federal
Reserve Bank is able to tame financial excesses.

In order to investigate the effect of monetary policy on stock market un-
certainty the entire effect will be separated into a linear and nonlinear part.
It is shown that monetary policy Granger-cause stock market confidence in a
linear way. Hence, linear methods are appropriate tools for investigating the
impact of macroeconomic indicators on stock market confidence. Contrary,
the link between confidence and uncertainty is strongly nonlinear and is intro-
duced on a macroeconomic level by a game with strategic complementarities
(see Cooper (1999)).

In the opposite direction stock market uncertainty may also affect mon-
etary policy. Fornari and Mele (2009) show that stock market uncertainty
shocks predict economic activity and leads to a sharp drop in employment
and output (Bloom (2009)). Therefore, it is conceivable that the monetary
authority respond to stock market uncertainty, because it contains informa-
tion about future economic outcomes. Jovanović and Zimmermann (2010)
confirm this conjecture showing that the nominal US interest rate (Federal
Funds Rate) significantly reacts to stock market uncertainty in an uncertainty
augmented Taylor rule.

The so-called V IX index, which deals with implied volatility, is a popu-
lar proxy for financial market uncertainty. The index is designed to measure
the market’s expectation of 30-day variability implied by at-the-money S&P
500 option prices and is published by the Chicago Board Options Exchange
since 1990. Based on an economic model this paper identifies temporal de-
pendence of stock market uncertainty as a proxy for stock market confidence.
Bollerslev, Sizova, and Tauchen (2009) investigate the temporal dependence
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structure of intra-day V IX data for real-time trading. By using low fre-
quency data (monthly) we put the focus on uncertainty trends, which is an
issue in economcs.

In order to derive a proxy for stock market confidence, copula-based
Markov models are applied as the methodological framework. By the theo-
rem of Sklar (1959) any multivariate distribution can be expressed in terms
of its marginal distributions and its copula function. A copula function is
a multivariate distribution function with standard uniform marginals, which
captures the scale-free dependence structure of the multivariate distribu-
tion function. The copula-based approach has the advantage of separating
the information about the marginal distributions from the scale-free depen-
dence structure. Darsow, Nguyen, and Olsen (1992) extent this approach
to Markov processes. By coupling different marginal distributions with dif-
ferent copula functions, copula-based time series models are able to model
a wide variety of marginal behaviors (such as skewness and fat tails) and
dependence properties (such as nonlinearities, clusters and tail dependence).
Chen and Fan (2006) develop a two-step estimation procedure for paramet-
ric copula functions and derived the so called generalized semiparametric
regression transformation model. This innovative statistical framework is
usable for nonlinear Markov models and augment available linear AR mod-
els. The main methodological contribution of this paper is the introduction
of copula-based Markov models in economics. Furthermore, it is the time
that this recently developed statistical method is used for the deviation of a
proxy for stock market confidence. In general, copula-based Markov models
augment available econometric tools and can be potentially applied to a wide
range of economic questions.

The rest of the paper is organized as follows. Section 2 reviews the
methodological concept of copula-based Markov processes and derives a proxy
for conditional temporal dependence. Section 3 presents the economic model
of stock market confidence. Section 4 outlines the statistical copula specifi-
cation, whereas Section 5 presents causal effects of macroeconomic indicators
for the stock market. Section 6 concludes. Technical details are relegated to
the Appendix.

2 Methodology

Let {Yt} be a stationary first-order Markov process with continuous state
space. Then the joint distribution function H(yt−1, yt) = P (Yt−1 ≤ yt−1, Yt ≤
yt), (yt−1, yt) ∈ IR2, of Yt−1 and Yt completely determines the stochastic prop-
erties of {Yt}. Due to Sklar’s Theorem, it is possible to express H(yt−1, yt)
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in terms of the marginal distribution G(yt) = P (Yt ≤ yt), yt ∈ IR, of Yt and
the dependence function of Yt−1 and Yt. This dependence function

C(G(yt−1), G(yt)) = H(yt−1, yt) (1)

is known as ”copula”. Hence, C(ut−1, ut) = P (Ut−1 ≤ ut−1, Ut ≤ ut),
(ut−1, ut) ∈ [0, 1]2, is the joint distribution function of the two random vari-
ables Ut−1 = G(Yt−1) and Ut = G(Yt). h(·, ·), c(·, ·) and g(·) are the associated
(joint) density functions. In this paper we will consider three frequently used
copulas (Gauss, Clayton, Frank) and one rarely used copula (Fang). For de-
tails see the Appendix. One obvious feature of the copula-based time series
approach is the possibility to separate the time dependence structure from
the marginal distribution. Especially in economics this issue is important,
due to the large amount of economic information reflected by the marginal
distribution.1 We make the following set of assumptions:

(A1) {Yt}n
t=1 is a sample from a stationary first-order Markov process gen-

erated from the true marginal distribution G(·) - which is invariant and
absolutely continuous with respect to the Lebesgue measure on the real line
- and the true parametric copula C(·, ·; α) - which is absolutely continuous
with respect to the Lebesgue measure on [0, 1]2.
(A2) G(·) and the d-dimensional copula parameter α ∈ IRd are unknown.
(A3) C(·, ·; α) is neither the Fréchet-Hoeffding upper bound (C(ut−1, ut) =
min(ut−1, ut)) nor the lower bound (C(ut−1, ut) = max(ut−1 + ut − 1, 0)).

If (A3) were not true, it is well-known that Yt would be almost surely a
monotonic function of Yt−1. Therefore, the resulting time series would be
deterministic and in case of stationarity, Yt = Yt−1 for the upper bound and
Yt = G−1(1 − G(Yt−1)) for the lower bound would follow. We abstract from
these cases to focus on stochastic samples of stationary first-order Markov
processes. Due to Sklar’s Theorem of equation (1) the copula density func-

tion c(ut−1, ut; α) = ∂2C(ut−1,ut;α)
∂ut−1∂ut

equals h(yt−1,yt)
g(yt−1)·g(yt)

. Hence, the conditional
density of yt given yt−1, . . . , y1 is

h(yt|yt−1) = g(yt)c(G(yt−1), G(yt); α) . (2)

As far as the conditional density is a function of the copula and the marginal,
the vt-th, vt ∈ [0, 1], conditional quantile Qvt of yt given yt−1 is a function of

1Furthermore, the temporal dependence structure is invariant concerning monotonic trans-
formations by the invariance theorem of copulas . Hence, temporal dependence of the V IX
equals the temporal dependence structure the frequently used transformations V IX2 and
lnV IX.
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the copula and the marginal,

Qvt(yt|yt−1) = G−1
(
C−1

t|t−1[vt|G(yt−1); α]
)

. (3)

Ct|t−1(ut|ut−1; α) = P (Ut ≤ ut|Ut−1 = ut−1) = ∂C(ut−1,ut;α)
∂ut−1

denotes the con-
ditional distribution of Ut given Ut−1 = ut−1, which we assume to exist.
Therefore, C−1

t|t−1[vt|G(yt−1); α] is the vt-th conditional quantile of ut given
ut−1. Considering assumption (A2) the unknown marginal distribution G(·)
and the unknown copula parameter vector α have to be estimated. Chen
and Fan (2006)2 derive the following semiparametric two-step procedure:

Step 1: Estimate G(y) by the rescaled empirical distribution

Ĝ(y) =
1

n + 1

n∑
t=1

1{Yt ≤ y} . (4)

Step 2: Estimate the copula parameter vector by

α̂ = arg max
α

1

n

n∑
t=2

log c(Ĝ(Yt−1), Ĝ(Yt); α) . (5)

α̂ is root-n consistent and has approximately a normal distribution.
According to Chen and Fan (2006) the following generalized semipara-

metric regression transformation model exists:

Λ1(G(Yt)) = Λ2(G(Yt−1)) + νt , E(νt|Yt−1) = 0 , (6)

with a parametric increasing function Λ1(·) of Ut, Λ2(ut−1) := E(Λ1(Ut)|Ut−1 =
ut−1), and the conditional density of νt given Ut−1 = ut−1 is

fνt|Ut−1=ut−1(νt) =
c(ut−1, Λ

−1
1 (νt + Λ2(ut−1)); α)

dΛ1(νt+Λ2(ut−1))
dνt

. (7)

It follows in general

Λ2(ut−1) = E(Λ1(Ut)|Ut−1 = ut−1) =
∫ 1

0
Λ1(ut)c(ut−1, ut; α)dut (8)

and for the special case of identity mapping Λ1(ut) = ut

Λ2(ut−1) = E(Ut|Ut−1 = ut−1) = 1 −
∫ 1

0
Ct|t−1(ut|ut−1; α)dut . (9)

2Instead of using the rescaled empirical distribution function, one could use an adequate
kernel estimator of the distribution function. Furthermore, they offer an appropriate
bootstrap method to construct statistical inference procedures for the estimated quantiles.

7



Therefore, without loss of generality the identity mapping case yields to the
autoregressive process3

ut = Λ2(ut−1) + νt . (10)

Contrary to the traditional linear case, |α| < 1,

ut = αut−1 + εt (11)

with an iid error εt, E(εt|ut−1) = 0, the copula-based approach allows for
nonlinear temporal dependence structures. In order to calculate a proxy
for the systematic temporal dependence between ut−1 and ut substitute the
theoretical quantile ut by its nonparametric estimate of the empirical distri-
bution ût = n+1

n
Ĝ(y) and name the ascendingly sorted empirical quantiles

ût by û��
t . The systematic projection of the expected quantile in the linear

case is û�
t = α̂ · û��

t−1 and leads to a constant strength of temporal dependence
calculated by Δû�

t = α̂/n. In the generalized case the systematic projection
of the expected quantile is

û�
t = C−1

t|t−1(0.5|û��
t−1; α̂) (12)

and can be used to calculate the proxy for the strength of temporal depen-
dence Δû�

t = û�
t − û�

t−1. This generalized version of temporal dependence
allows also for nonlinear dependencies conditional on the level of û�

t−1 and
the copula C. Therefore, the following definition of conditional temporal
dependence will be considered:

Definition 1 The proxy for conditional temporal dependence between the
random variables Ut−1 and Ut given û�

t−1 and a copula C is defined by:

dep(Ut−1, Ut|û�
t−1, C) := Δû�

t

Once the values for Δû�
t are calculated, every ût can be uniquely related to

a value yt and Δû�
t and leads to a time series of conditional temporal depen-

dencies dep(Yt−1, Yt|yt−1, C) which correspond to the values of yt. Although
the copula parameters - which can be transformed to the correlation coeffi-
cient according to Kendall or Spearman - are treated as time invariant (α
and not αt) the copula itself allows for a variation of temporal dependence
conditional on the quantile level.

3Strictly speaking the process is an autoregressive quantile process, whereas the quantile
treatment can be simply interpreted as a stabilizing transformation.
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3 Model

Consider the random variable Y �
i,t which stands for stock market uncer-

tainty of investor i = 1, . . . ,m at the end of the last trading day of month
t = 1, . . . , n and its realization y�

i,t.
4 According to Aoki and Yoshikawa (2007)

about 95 percent of all market participants consider two investment strate-
gies. With two largest clusters, there are two regimes; one with a cluster of
investors with strategy 1 as the largest share, and the other with a cluster of
investors using strategy 2 as the largest share. Namely, fundamentalists dom-
inate the market in regime 1 and chartists dominate the market in regime 2.
We postulate that the decision at the end of period t of a market participant
i being a fundamentalist (yi,t = 1) or a chartist (yi,t = 0) is determined by
individual stock market uncertainty y�

i,t and an individual threshold ϕi for
being a chartist or a fundamentalist.

yi,t =

{
0 , if y�

i,t ≥ ϕi

1 , if y�
i,t < ϕi

This decision rule implies that individuals make their strategy decision once
a month and know their own threshold ϕi.

The main argument for this decision rule is the attempt of the investors
to maximize their expected profits. Consider stock market uncertainty in
the conventional sense as expected stock market variability. Hence, y�

i,t can
be substituted by Ei,t(σt+1), where σt+1 stands for stock market variability
during the month t + 1. As Aoki and Yoshikawa (2007) show, a market
structure dominated by chartists leads to higher stock market variability σ
than a market structure dominated by fundamentalists. Corresponding to
Fama (1970) the market structure dominated by chartists reflects inefficient
markets and the market structure dominated by fundamentalists reflects
weak efficient markets. It is therefore conceivable that investors conclude
from variability to market efficiency and reflects a new argument in eco-
nomics. This behavioral assumption allows for the link between Ei,t(σt+1)
and Ei,t(market efficiencyt+1). In case of inefficient markets asset prices do
not reflect historical price information and it is possible to earn excess re-
turns r by being a chartist. On the other hand, if the market is rather
weakly efficient, asset prices reflect historical price information and it is pos-
sible to achieve excess returns by being a fundamentalist. Consequently,
y�

i,t ≥ ϕi implies Ei,t(rt+1|yi,t = 0) > Ei,t(rt+1|yi,t = 1) and y�
i,t < ϕi implies

4In fact Y �
i,t symbolizes the quantile of stock market uncertainty. In order to avoid a

burdensome notation the economic argumentation neglects this transformation without
loss of generality in this section.
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Ei,t(rt+1|yi,t = 1) > Ei,t(rt+1|yi,t = 0). Hence, the investment decision is mo-
tivated by expected profits and follows the expected market structure. High
uncertainty leads to an investment strategy which causes higher stock market
variability (Aoki and Yoshikawa (2007)). Hence, the decision rule acts like an
accelerator for financial market instability and resembles a game with strate-
gic complementarities, which induces nonlinearities on a macroeconomic level
(see Cooper (1999)).

To construct a proxy for stock market confidence it is necessary to formu-
late an expectation formation mechanism of the expectation Ei,t(σt+1) = y�

i,t

in the decision rule. The following rule is motivated by Keynes (1936) and
explains expectations by a projection of the existing situation and expected
changes. Adopting this general approach in a time series context the projec-
tion of the existing situation is Λ3(Ei,t−1(σt)) with a function Λ3 determined
by a copula. The expected changes are Ei,t(σt+1|σ−

t ) − E−
t (σt+1) = ε�

i,t with
a projection of realized variability Ei,t(σt+1|σ−

t ) conditional on information
concerning realized variability σ−

t up to the day prior the last trading day
and information concerning market variability expectations E−

t (σt+1) until
the day before the last trading day. According to this thoughts we receive
the individual expectation formation

y�
i,t = Λ3(y

�
i,t−1) + ε�

i,t (13)

with E(ε�
i,t|y�

i,t−1) = 0. The variability
√

V (ε�
i,t|y�

i,t−1) = |ε�
i,t| of ε�

i,t corre-

sponds to the absolute deviation of individual realized variability expecta-
tions and market variability expectations. Following Keynes (1936)5 ”confi-
dence” is defined by the relevance - or equivalently weight - of the systematic
expectation argument. Dependent on the state of confidence a specific ex-
pectation follows and is caused by confidence. Regarding equation (13) the
systematic component y�

i,t−1 is weighted by the function Λ3. If the relevance
of y�

i,t−1 for y�
i,t is high, the confidence of the expectation argument is high

and vice versa. This mechanism implies in connection with the decision rule
that in case of high confidence the development of expectations show more
persistence and with it more persistence of the development of investment
strategies. The market participants have less incentive to change their strat-
egy in face of high confidence. As long as the expectations are linked to
stock market variability it is reasonable to equate expectation confidence
with stock market confidence. Hence, the correct specification of Λ3 in the
copula-based Markov approach of (13) allows for a description of stock market
confidence dependent on the level of stock market uncertainty. In line with

5It is astonishing that Keynes already recognized the importance of confidence and that
his work is relevant for currently unsolved problems.

10



Definition 1 individual stock market confidence is then measurable by the
temporal dependence between Y �

i,t−1 and Y �
i,t. Leaving the individual level

by aggregating individual investment decisions leads to the market struc-
ture St+1 = m−1 ∑m

i=1 yi,t with 0 ≤ St+1 ≤ 1 and the market uncertainty
Et(σt+1) = y�

t = m−1 ∑m
i=1 y�

i,t, which can be described analog to (13) by

y�
t = Λ(y�

t−1) + ε�
t (14)

with E(ε�
t |y�

t−1) = 0. The market wide stock market confidence proxy is the
temporal dependence of the market wide stock market uncertainty.

Concerning the question whether monetary policy is able to influence
stock market uncertainty in a causal manner, it is crucial to answer the
question whether monetary policy is able to affect the uncertainty determin-
ing argument, here stock market confidence. In case of nonlinear dependence
between uncertainty and its fundamental reason, any linear empirical inves-
tigation of causality between monetary policy and stock market uncertainty
must fail. The concrete dependence between uncertainty and confidence is
specified by investment behavior and is rather difficult to derive analytically.
Hence, the time series approach offers a suitable proposal for the derivation
of behavioral pattern on an applicable empirical basis.

4 Copula selection

A canonical proxy for stock market uncertainty is the volatility index V IX of
the S&P 500 created by the Chicago Board Options Exchange (see e.g. Bloom
(2009)). We use data from Thompson Datastream6 for the period January
1990 to October 2010. Hence, the number of observed months is n = 250.
The development of the V IX is shown in Figure 1. In order to derive a
stock market confidence proxy four parametric copulas are discussed (Gauss,
Clayton, Frank, Fang). Although, copula-based Markov approaches are not
implemented in available software packages, technical details are relegated
to the Appendix to emphasize the economic argumentation. The hypothesis
that the Fang copula captures the time dependence structure of the V IX
can not be rejected on any plausible level of significance. Based on empirical
tests the correctness of the remaining copulas can be rejected. Hence, the
Fang copula seems to be the only correct copula in the set of copulas. To test
the correctness of a copula in a first-order Markov framework, consider the
following multiple hypothesis test of interest (notation in line with section 2):

6The time series code for the daily V IX closing prices in US dollars is ”CBOEVIX”.
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Figure 1: Monthly V IX closing prices.

H0: {Yt} is a first-order Markov process with copula C
H0 is equivalent to

H ′
0 : Vt = Ct|t−1(Ut|Ut−1; α) is uniformly distributed on [0, 1] and not auto-

correlated

We reject H0 if H ′
0 is rejected. Table 1 shows the estimation and test results.

The nonparametric estimate of Spearman’s correlation coefficient between
Ut−1 and Ut of 0.88 is similar to the Fang implied estimate of 0.81 according
to equation (20) and the ML-estimates. This empirical fact supports the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2: Contour with scatter plot of the empirical V IX quantiles t on the
abscissa and t + 1 on the ordinate of the Fang copula, with α̂ = 0.175 and
β̂ = 0.9994.
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Table 1: V IX results
Copula ML-estimation Estimated autocorrelation G-o-f

α β 1 2 3 4
Gauss 0.849 -0.173� 0.036 -0.082 0.028 0.871

(0.033) (0.007) (0.574) (0.201) (0.671) (0.435)
Clayton 2.002 0.052 0.239� 0.067 0.115 1.274

(0.118) (0.418) (0.000) (0.298) (0.072) (0.078)
Frank 10.843 -0.130� 0.031 -0.063 0.046 0.632

(0.790) (0.040) (0.625) (0.323) (0.475) (0.819)
Fang 0.175 0.9994 -0.084 0.050 -0.030 0.051 0.622

(0.015) (0.0004) (0.186) (0.431) (0.644) (0.427) (0.835)

Sample: 1990:1-2010:10 • Initial value of the one parameter copulas is 1 and
of the Fang copula are α̂1 = 0.4 and β̂1 = 1 • ML-estimates are different
from zero at any level of significance (standard errors in brackets) • Spear-
man’s correlation coefficients and p-values of the hypothesis ρs(Vt, Vt−l) = 0,
l = 1, 2, 3, 4, in brackets • � indicates a significant autocorrelation on the 10%
overall error rate using Bonferroni’s adjustment (see e.g. (Sokal & Rohlf,
1995)) • 2 is the number of tests performed (correlation test up to a specific
lag and goodness-of-fit (G-o-f) test) • Finite sample adjustment of the Kol-
mogorov statistic and corresponding p-values of the hypothesis Vt ∼ U [0, 1]
in brackets (see e.g. (D’Agostino & Stephens, 1986))

correctness of the Fang copula.
To control the appropriateness of the Fang copula the Appendix contains

a robustness check, which leads to the conclusion that the data obey tail dis-
persion. This tail dispersion can not be modelled by the Gauss and Clayton
copula. Even the Frank copula as a representative of a copula with sym-
metric tail dispersion is inferior in comparison to the Fang copula. Only the
Fang copula is able to deal with asymmetric tail dispersion. Summing up the
hypothesis tests and the robustness checks the correctness of the Fang copula
is indicated. Figure 2 allows for a graphical inspection of its density based
on the parameter estimates. The Fang copula shows more density mass in
the lower and upper tails and confirms the asymmetric tail dispersion issue.
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5 Monetary policy, confidence and uncertainty

Once the correct copula is specified, it is possible to calculate the stock mar-
ket confidence proxy according to equation (12) and Definition 1.7 The left
panel of Figure 3 points out the dependence structure between confidence and
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Figure 3: Dependence between US stock market uncertainty and US stock
market confidence.

uncertainty quantiles and the right panel shows the dependence between con-
fidence and uncertainty levels. The backward projection from the quantiles
to the levels is done by the empirical distribution function. By using copula-
based Markov models as the methodological framework the statistical sig-
nificant and stable nonlinear relationship between the Keynesian motivated
stock market confidence proxy and its dependent stock market uncertainty
can be derived. If the monetary authority is able to influence stock market
uncertainty, it must influence the uncertainty driving factor ”confidence”. To
establish causal relationships in the Granger sense, an autoregressive frame-
work with several variables is considered. In line with the literature (see e.g.
Bekaert and Hoerova (2010)) the monetary policy stance is measured by the
real interest rate in percent rt = it −πt, where it equals the monthly average

7Due to the fact that the inverse of the conditional distribution C−1
t|t−1 does not exist

in closed form, the empirical V IX quantile ût = C−1
t|t−1(0.5|ût−1; α̂, β̂) can be obtained

from the equation 0.5 = Ct|t−1(ût|ût−1; α̂, β̂) using a numerical root-finding routine (here:
Newton’s procedure). Hence, numerical imprecisenesses of the root-finding routine can
lead to obvious outliers and can be substituted by local means.
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of the Federal Funds Rate in percent and πt = 12 · ln(cpit/cpit−1) ·100 stands
for inflation in percent based on the seasonally adjusted consumer price in-
dex (1982-84=100) cpi.8 Like Bekaert and Hoerova (2010) we account for
business cycle variation and incorporate in our analysis the first difference
Δet of the unemployment rate.9 Let kt denote monthly stock market con-
fidence calculated on the basis of the Fang copula and its ML-estimates.10

Furthermore, an intercept and some dummy variables are considered. One
dummy dcrisis,t accounts for the recent financial crisis and comprises the value
1 for the period 2007:8 to 2010:10 and 0 elsewhere. According to Figure 3
the effect of confidence on uncertainty is inverse and depends on whether
a low uncertainty regime is observed or a high uncertainty regime. Every
empirical V IX quantile smaller or equal than 0.268 generates the value 1
in the dummy dlow,t and 0 elsewhere. To account for the dynamics dlow,t−1

is also included into the following autoregression, which is motivated by the
Granger causality test.

kt = β1 + β2kt−1 + β3rt−1 + β4Δet−1 + β5dcrisis,t + β6dlow,t + β7dlow,t−1 + εt(15)

The estimation results are shown in Table 2. In order to test whether mon-

Table 2: OLS estimation and Granger causality test

β1 β2 β3 β4 β5 β6 β7

2.630∗∗ 0.333∗∗ -0.060∗∗ -0.693∗ -0.570∗∗ -2.357∗∗ 0.743∗∗

(0.291) (0.072) (0.020) (0.401) (0.163) (0.384) (0.358)

Sample: 1990:3-2010:10 • ∗∗ and ∗ indicate the rejection of the hypothesis
of zero coefficients on the 95% and 90% level • White heteroskedasticity
consistent standard errors in brackets • R2 = 0.46 • p-values: Breusch-
Godfrey test (lag 12) = 0.21 - ARCH(1) test = 0.11 - White test (cross
terms) = 0.00 - Wald test (β3 = β4 = 0) = 0.001

etary policy does not cause stock market confidence it is necessary to test
the hypothesis β3 = 0. On any plausible level of significance this hypothesis
will be rejected and it allows for the confirmation of causality. Analogously,
it is also evident that the labor market causes confidence. Moreover, mone-
tary policy and the labour market jointly (β3 = β4 = 0) cause stock market

8All necessary monthly data is obtained from Thompson Datastream. The appropriate
Datastream codes are: i = ”USFDFUND”, cpi = ”USCONPRCE”
9The Datastream code for the unemployment rate in levels is ”USUN%TOTQ”.

10The originally calculated values are multiplied by the factor 1000. This transformation
leads to more feasible coefficient estimates in the following.
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confidence on any plausible level of significance. This is a very important
conclusion of the Granger causality tests. Monetary policy is able to influ-
ence expectations concerning stock market variability by real interest rates.
This conclusion underlines the importance of the monetary authority during
financial excess. On the other hand monetary policy is not the only causal
argument for confidence, due to the causality effect of the labour market.

Remarkable is the negative sign of the highly significant estimate β̂5,
which identifies the current financial crisis as a heavy confidence crisis. This
sensible result empirically confirms the adequacy of the confidence proxy.
Regimes characterized by very low stock market uncertainty leads to a con-
fidence drop (β̂6 < 0). If the uncertainty persists on the low level the confi-
dence drop will be partially compensated (β̂7 > 0). Due to the construction
of the dummy variables equation (15) is reducible to

kt = β1 + β2kt−1 + β3rt−1 + β4Δet−1 + εt (16)

during high uncertainty regimes (neglecting the extraordinary current finan-
cial crisis).

By combining the results of the copula-based Markov approach and the
autoregression the dependence structure between monetary policy and stock
market uncertainty can be separated into a nonlinear and a linear part. Con-
ditional on stock market confidence a specific level of stock market uncer-
tainty follows in a nonlinear manner described by the Fang copula. On
the other side stock market confidence is caused by monetary policy and
the labour market in a linear manner. This issue leads to the conclusion
that the stock market confidence proxy could be in general a useful tool in
macroeconomic investigations concerning stock market uncertainty. Linear
econometric methods are still appropriate even when the entire dependence
structure between stock market uncertainty and macroeconomic variables
seem to be nonlinear. To account for this fact the copula-based confidence
proxy absorbs the nonlinear dimension of the problem. With respect to the
real interest rate the following ceteris paribus reactions are derived:11

Low uncertainty regime: V IX ≤ 14.34 ⇒ ΔV IX
Δr

> 0 (17)

High uncertainty regime: V IX > 14.34 ⇒ ΔV IX
Δr

< 0 (18)

Even in the ceteris paribus case the numerical monetary effect depends on the
V IX level. For example, consider the case of unemployment stagnation (e =
0), an initial uncertainty level of approximately 23 and a real interest rate of
4%. Under these circumstances the development of stock market confidence

11The V IX threshold of 14.34 is obtained from Figure 3.
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Figure 4: Stock market confidence response to a unique interest rate shock
of minus 3 percentage points (corresponding V IX values in brackets). Initial
situation in month 1: r = 4%, e = 0%, V IX = 23

is stable. Based on the parameter estimates of Table 2 a permanent interest
rate reduction from 4% to 1% leads to a stable uncertainty level of 21.3
(ceteris paribus). In order to achieve the same uncertainty reaction without
interest rate adjustments the unemployment rate has to be reduced (Δe =
−0.26%). In face of the mean value of 0.017% for unemployment changes,
this unemployment adjustment seems to be large. The response of stock
market confidence to a unique real interest rate shock of -3 percentage points
is shown in Figure 4.12 Interest rate shocks are temporary in nature and
persist approximately one quarter.

6 Conclusions

This paper investigates the effect of monetary policy on stock market un-
certainty. The uncertainty reaction is separable into a linear and nonlinear
part. Motivated by a game with strategic complementarities nonlinearity
is introduced on a macroeconomic level. Based on Keynesian expectation
formation a proxy for stock market confidence is derived. According to this
proxy stock market confidence is measurable as temporal dependence of stock

12The scaling of stock market confidence corresponds to the confidence scaling in Figure 3.
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market uncertainty. The nonlinear dependence structure between confidence
and uncertainty is modelled by a copula-based Markov approach. Nonlin-
ear tail dispersion of the V IX data - which is interpreted as stock market
uncertainty - is only captured by the copula of Fang et al. (2000). For low
uncertainty regimes (V IX ≤ 14.34) increasing confidence leads to increasing
uncertainty. In case of high uncertainty regimes (V IX > 14.34) increasing
confidence leads to decreasing uncertainty. Hence, the dependence structure
between the uncertainty driving factor confidence and uncertainty is strongly
nonlinear.

The linear effect of monetary policy on stock market confidence is con-
firmed by Granger causality tests. Real interest rates as the measure of
monetary policy stance affect confidence in an inverse manner. Increasing
interest rates lead to decreasing stock market confidence. Furthermore, real
interest rate shocks persist approximately one quarter. A second causal argu-
ment for confidence is the labor market. Increasing unemployment changes
lead to decreasing confidence. Moreover, the current financial market crisis
can be identified as a heavy confidence crisis based on the confidence proxy.

Summing up the economic model and empirical results it is possible to
conclude that causality runs from monetary policy and labor market condi-
tions linear to stock market confidence and finally nonlinear to stock market
uncertainty. Direct linear investigations between macroeconomic indicators
and uncertainty neglect the uncertainty driving factor ,,confidence” and its
nonlinear impact on uncertainty. In the light of the results of the paper
insignificant effects of monetary policy on stock market uncertainty are the
consequence of linear misspecifications. The monetary authority is therefore
very well in the position to influence financial excess during financial crisis.
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Publ. Inst. Statist. Univ. Paris, 8, 229-231.

Sokal, R. R., & Rohlf, F. J. (1995). Biometry (3 ed.). New York: W. H.
Freeman and Company.

Appendix

Copula review:

Bivariate tail dependence is one way to focus on variability of temporal depen-
dence. This concept relates to the amount of dependence in the lower-quadrant
tail or the upper-quadrant tail of a bivariate distribution (see e.g. (Joe, 1997)) and
is relevant for dependence in extreme values. A copula has lower tail dependence if
λL ∈ (0, 1], where λL = limu→0 P (Ut−1 ≤ u|Ut ≤ u), and no lower tail dependence
if λL = 0. Similarly, a copula has upper tail dependence if λU ∈ (0, 1], where
λU = limu→1 P (Ut−1 > u|Ut > u), and no upper tail dependence if λU = 0.

I. The Gauss copula (e.g. Joe (1997))

C(ut−1, ut; α) = Φα[Φ−1(ut−1), Φ−1(ut)]

with the standard normal distribution function Φ(·), the bivariate normal dis-
tribution function Φα(·, ·) with means zero and variances 1 and the correlation
coefficient |α| < 1 is an elliptical copula. Its lower tail dependence parameter is
λL = 0 und its upper tail dependence parameter is λU = 0. Therefore, it exhibits
neither dependence in the negative tail nor in the positive tail. The copula density
function c(ut−1, ut; ·) is:

(1 − α2)−1/2 exp
{
−1

2
(1 − α2)−1[u2

t−1 + u2
t − 2αut−1ut]

}
exp

{
1
2
[u2

t−1 + u2
t ]
}

Due to the linearity of the Gauss copula according to Chen and Fan (2006)
Φ−1(ut) = αΦ−1(ut−1) + εt with εt ∼ N(0;

√
1 − α2) follows. Consequently,

ut = Φ(αΦ−1(ut−1) + εt) and vt = Φ(εt/
√

1 − α2) follows.
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II. The Clayton copula (Clayton (1978))

C(ut−1, ut; α) =
(
u−α

t−1 + u−α
t − 1

)− 1
α ,

α > 0, is an asymmetric Archimedean copula. Its lower tail dependence parameter
is λL = 2−

1
α und its upper tail dependence parameter is λU = 0. Therefore, it

exhibits greater dependence in the negative tail than in the positive tail. The
copula density function is:

c(ut−1, ut; α) = (1 + α) (ut−1ut)−α−1(ut−1
−α + ut

−α − 1
)−2−1/α

The inverse of the conditional distribution is:

C−1
t|t−1(vt|ut−1; α) = ut = [(v−α/(1+α)

t − 1)u−α
t−1 + 1]−1/α

III. The Frank copula (Frank (1979))

C(ut−1, ut; α) = − 1
α

log

(
1 +

(e−αut−1 − 1) (e−αut − 1)
(e−α − 1)

)
,

α = (−∞, +∞)\{0}, is a symmetric Archimedean copula. Its lower tail depen-
dence parameter is λL = 0 and its upper tail dependence parameter is λU = 0.
Therefore, it exhibits neither dependence in the negative tail nor in the positive
tail and shows more tail dispersion than the Gauss copula. The copula density
function is:

c(ut−1, ut; α) = αηe−α(ut−1+ut)/[η − (1 − e−αut−1)(1 − e−αut)]2, η = 1 − e−α

The inverse of the conditional distribution is:

C−1
t|t−1(vt|ut−1; α) = ut = −α−1 log{1 − (1 − e−α)/[(v−1

t − 1)e−αut−1 + 1]}

In order to allow for a more flexible copula specification the following two
parameter copula will be applied.

IV. The Fang copula (Fang et al. (2000))

C(ut−1, ut; α, β) =
ut−1ut[

1 − β
(
1 − ut−1

1
α

) (
1 − ut

1
α

)]α (19)

considers the parameters α > 0 and 0 ≤ β ≤ 1. When β = 0, Ut−1 and Ut are inde-
pendent. When β = 1, C(ut−1, ut; α, 1) in (19) becomes the bivariate Clayton cop-
ula. As α = 1, C(ut−1, ut; 1, β) is the Ali-Mikhail-Haq copula (Ali et al. (1978)) and
the generalized Eyraud-Farlie-Gumbel-Morgenstern copula (Cambanis (1977)). By
means of some stochastic transforms, some bivariate distributions can be induced
by the Fang copula, such as the generalization of Gumbel’s bivariate logistic dis-
tribution given by Satterthwaite and Hutchinson (1978). Moreover, it can be
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shown that if β < 1, limα→0 C(ut−1, ut; α, β) = limα→∞ C(ut−1, ut; α, β) = ut−1ut.
Therefore, Ut−1 and Ut are independent as α → 0 and α → ∞. To asses the
correlation between two random variables, copulas can be used to define Spear-
man’s ρs (see Joe (1997)) in general. Analog to the general case the Spearman’s
correlation coefficient of the Fang copula between Ut−1 and Ut is representable by
a hypergeometric function. A hypergeometric function of x is defined as

pFq(a1, · · · , ap; b1, · · · , bq; x) =
∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

xk

k!
,

where (a)k = Γ(a+k)/Γ(a) and a1, . . . ap, b1, . . . , bq are parameters. Γ(z) stands for
the gamma function

∫∞
0 e−ttz−1dt. Then, the Spearman’s correlation coefficient

ρs(α, β) of the Fang copula in (19) between Ut−1 and Ut is given by

ρs(α, β) = 3(3F2(1, 1, α; 1 + 2α, 1 + 2α; β) − 1) . (20)

The copula density function is:

c(ut−1, ut; α, β) =
(β2 + β/α)(ut−1ut)1/α + (β − β2)(u1/α

t−1 + u
1/α
t ) + (1 − β)2

[1 − β(1 − ut−1
1/α)(1 − ut

1/α)]α+2

C−1
t|t−1 does not exist in closed form. ut = C−1

t|t−1(vt|ut−1; α, β) can be obtained
from the equation vt = Ct|t−1(ut|ut−1; α, β) using a numerical root-finding routine
(here: Newton’s procedure).

Robustness check:

Consider the nonparametric estimated conditional quantiles ût, which contain
no information about a parametric copula. On the other hand if a parametric
copula is selected, it is possible to calculate copula implied conditional quantiles
which are used to construct a copula-based confidence interval of the conditional
quantiles. Regarding the level of significance ε it follows for the upper interval
bound

ût,ε = C−1
t|t−1(1 − ε/2|ût−1; α̂) (21)

and for the lower interval bound

ût,ε = C−1
t|t−1(ε/2|ût−1; α̂) . (22)

The ,,overall region” of Table 3 reports the estimated error rates for all conditional
quantiles ût, t = 2, . . . , n. Therefore, given ût, ût,ε and ût,ε copula-based error rates
are:

ε̂overall = 1 −
(

1
n − 1

n∑
t=2

1{ût,ε ≤ ût ≤ ût,ε}
)

(23)
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Focusing the tails of the bivariate copula leads to further information about the
copula adequacy. The calculation of the estimated error rates of the ,,lower region”
of Table 3 is analog to (23), but only valid for lower ût. We define the region for
lower quantiles by ût < π with π = 1/3.13 According to

ε̂lower = 1 −
(

1
n

n∑
t=2

1{ût,ε ≤ ût ≤ ût,ε and ût < π}
)

(24)

the estimated error rate for the lower region are computed. Consequently, for the
,,upper region”

ε̂upper = 1 −
(

1
n

n∑
t=2

1{ût,ε ≤ ût ≤ ût,ε and ût > 1 − π}
)

(25)

holds. n stands for the cases with ût < π and n for the cases with ût > 1−π. Table
3 shows additionally the root mean squared error of the true and estimated error
rates separated according to different regions. The Fang copula is also superior
with respect to this criterion.

13Also for varying π similar error rates are observed.
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Table 3: Estimated conditional quantile error rates of the V IX

Copula Lower region Upper region Overall region
ε ε ε
0.10 0.05 0.10 0.05 0.10 0.05

Gauss 0.14 0.11 0.09 0.07 0.08 0.06
(0.05) (0.02) (0.02)

Clayton 0.22 0.17 0.07 0.04 0.10 0.07
(0.12) (0.02) (0.01)

Frank 0.10 0.01 0.13 0.07 0.10 0.03
(0.03) (0.03) (0.02)

Fang 0.07 0.04 0.11 0.02 0.09 0.04
(0.02) (0.02) (0.01)

Sample: 1990:1-2010:10 • The estimated conditional quantiles ût are computed by the
empirical distribution. By assuming a certain parametric copula a level of significance ε

determines a (1− ε) confidence interval of the nonparametric estimated conditional quan-
tiles ût. With respect to the inverse conditional distributions for the upper interval bound
vt = 1 − ε/2 and for the lower bound vt = ε/2 holds. The unknown copula parameters
are substituted by appropriate ML-estimates according to Table 1. • The copula specific
numbers are the relative frequencies for the nonparametric estimated conditional quan-
tiles outside the parametric confidence interval. The lower quantile region is defined by
quantiles in a range of (0; 1/3). For the upper quantile region (2/3; 1) holds. • Root mean
squared errors of the regions in brackets
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