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Abstract
Focusing on travel survey data from Germany, this paper investigates the
determinants of automobile travel, with the specific aim of quantifying the
effects of fuel prices and fuel economy. The analysis is predicated on the no-
tion that car mileage is a two-stage decision process, comprising the discrete
choice of whether to own a car and the continuous choice of distance traveled.
To capture this process, we employ censored regression models consisting of
Probit and OLS estimators, which allows us to gauge the extent to which
sample selectivity may bias the results. Our elasticity estimates indicate a sig-
nificant positive association between increased fuel economy and increased
driving, and a significantly negative fuel-price elasticity, which ranges between
–35% and –41%. Taken together, these results suggest that fuel taxes are likely
to be a more effective policy measure in reducing emissions than fuel-
efficiency standards.
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1 Introduction

In Europe, as elsewhere in the industrialized world, the question of how motorists

respond to oil prices is a priority concern of environmental policy. Private automobi-

les not only account for 12% of the European Union’s CO2 emissions (EC 2007), but

are also responsible for a range of other negative externalities, including noise polluti-

on, congestion, and accidents. For several decades, European governments have relied

heavily on fuel taxation both for raising revenues and as a disincentive to drive, with

fuel taxes accounting for upwards of 75% of the price that Europeans pay at the pump.

More recently, the European Commission (EC) has turned its attention to efficiency

standards to lessen the environmental impact of cars, and is currently considering a

legislative framework that would reduce average emissions to 120g CO2/km by 2012.

A critical question in gauging the merits of such policy measures concerns how

consumers adjust to the unit costs of energy services such as car travel. While higher

fuel prices, as implied by soaring oil prices or increased taxes, raise these costs, impro-

ved efficiency effectively reduces them, thereby stimulating the demand for car travel.

This demand increase is referred to as the rebound effect, as it offsets the original re-

duction in energy demand that results from an increase in efficiency. Though the basic

mechanism underlying the rebound effect is widely accepted, its magnitude remains a

contentious question.

A survey by GOODWIN, DARGAY, and HANLY (2004), for example, cites fuel-

price elasticities - from which rebound effects can be derived - varying between 4%

and 89% based on both short- and long-run estimates from studies using pooled cross-

section/time series data. More recent work by WEST (2004) and FRONDEL, PETERS,

and VANCE (2008), who use household-level pooled and panel data from the U.S. and

Germany, puts the estimated rebound effect at the high end of this range, averaging

between 87% and 57%, respectively. At the other end, SMALL and VAN DENDER (2007)

uncover rebound effects varying between 2.2% and 15.3%, using a pooled cross-section

of U. S. states for 1966-2001.
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To date, the empirical literature on vehicle use has identified the rebound effect al-

most exclusively via fuel-price elasticities, thereby relying on the assumption that both

rebound and price effects are simply two sides of the same coin: behavioral changes

due to varied unit costs of energy services such as car traveling. Furthermore, the ma-

jority of empirical attempts to estimate price and, hence, rebound effects have drawn

on country-level data or data aggregated at sub-national administrative districts, with

a smaller pool of studies relying on household data.

The present study seeks to advance this line of inquiry by estimating econometric

models of car use on a panel of travel-diary data collected in Germany between 1997

and 2006. The study completes a recent analysis of elasticity estimates by FRONDEL,

PETERS, and VANCE (2008) in two distinct respects. First, two dimensions of car use

are considered: the discrete decision to own a car and the continuous decision of di-

stance traveled. Because these decisions are related and, moreover, may be influenced

by factors unobservable to the researcher, we explore alternative specifications using

censored regression techniques to assess whether the results are subject to biases emer-

ging from sample selectivity. Second, expanding on the single-car focus of FRONDEL,

PETERS, and VANCE (2008), the data set analyzed here includes multiple-car-owning

households, thereby allowing us to explore the sensitivity of the estimates to their in-

clusion.

Our results, which range between 35% and 52%, indicate rebound and price ef-

fects that are substantially larger than the typical effects obtained from U.S. based stu-

dies, but that are lower than the 57% to 67% range identified by FRONDEL, PETERS, and

VANCE (2008). Given the magnitude of the estimates, we conclude that our findings

call into question the efficacy of policies targeted at reducing energy consumption via

technological efficiency. Instead, these results suggest raising prices via fuel taxes to be

a promising energy conservation and climate protection measure.

The following section describes the data base used in the estimation. Section 3

presents the definitions of the key variables and draws on BECKER’s household pro-

duction framework to prove the direct rebound effect. Section 4 describes the econo-
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metric models specified for estimating both mobility behavior as well as the rebound

effect, followed by the presentation and interpretation of the results in Section 5. The

last section summarizes and concludes.

2 The Data

The data employed in this research are drawn from the German Mobility Panel (MOP

2007), an ongoing publicly available travel survey1. We use ten years of data from the

survey, spanning 1997 through 2006, a period during which real fuel prices in Germany

rose 3% per annum. Households that participate in the survey are requested to fill out

a questionnaire eliciting general socioeconomic information, such as residential loca-

tion, as well as person-related characteristics, including gender, age, and employment

status.

Our focus in the present analysis is on a subset of this data, referred to as the tank

survey, which covers vehicle travel among randomly selected car-owning households

from the larger sample. This survey takes place over a roughly six-week period in

each of three consecutive years, during which time respondents record the price paid

for fuel with each visit to the gas station, the distance traveled, and vehicle attributes

such as fuel economy and fuel type for each car driven during the survey. The unit

of observation in this data is the car, so that households owning multiple cars occupy

several rows of data. As the models estimated in this analysis draw on panel methods

in which the cross-sectional unit is defined as the household, the inclusion of such

multi-car households preclude the unique identification of an observation based on

the interaction of the panel- and time variables. Consequently, we randomly select one

of these cars for inclusion in the final data set, though we also explore the robustness

of the results when the multi-car households are omitted from the sample.

The data is augmented by merging in socioeconomic characteristics from the ge-

neral survey, which is also carried out over three years for each household. As the tank

1Contact information on obtaining the data is available at http://www.dlr.de/cs/de/.
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survey includes only car-owning households, we additionally append randomly selec-

ted no-car households from the general survey, such that they comprise roughly 20%

of the observations in a given year.2 The resulting data set contains 940 car-owning

households. Of these, 402 participated in two years of the survey and 538 in all three

years, yielding a total of 2,418 observations.3

In addition to fuel prices and fuel economy, several other automobile attributes

and household characteristics are specified as control variables in the analysis, the de-

scriptive statistics for which are presented in Table 1. To capture the effects of automo-

bile quality, the age of the car and two dummy variables indicating luxury and diesel

models are included. Demographic influences are measured by the number of adults,

the percentage of those who are female, and the number of children under 18 years of

age. Wealth effects are captured by a dummy indicating multiple car ownership, the

number of employed residents, the number with a college preparatory degree, and a

categorical variable measuring household income.4

To control for events that may disrupt the normal pattern of travel, dummies

are included indicating whether any employed member changed jobs in the preceding

year and whether the household undertook a vacation with the car during the survey

period. Finally, to capture fixed costs incurred with owning a car but not with driving,

we include an insurance cost index compiled by the German Insurance Association.

This index takes an integer value between 1 and 12 and measures the average insurance

cost of car ownership at the provincial level. Because the approximately 445 provinces

in the data set are delineated at a slightly higher level of spatial aggregation than the

2Roughly 80% of cars in Germany own at least one car (MiD 2008).
3To assess the possibility of attrition bias, we also explored specifications of the Two-Part Model

that included a dummy variable indicating the two-year participating households. As the dummy was

insignificant and had a negligible impact on the remaining coefficients, it was left out of the final speci-

fications.
4As is typical for survey data, information on income is missing for a large share of the households.

To impute the missing values, we employ the expectation-maximization algorithm recommended by

King et al. (2001). The employed algorithm can be implemented using a program compatible with the

statistical software R, and is downloadable from http://gking.harvard.edu.
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Table 1: Variable Definitions and Descriptive Statistics

Variable Name Variable Definition Mean Std. Dev.

s Monthly kilometers driven 1185.90 771.79

e Monthly fuel consumption in liters 96.21 64.13

µ Kilometers driven per liter 12.68 2.88

ps Real fuel price in e per kilometer 0.08 0.02

pe Real fuel price in e per liter 0.97 0.14

car age Age of the car 6.23 4.34

premium car Dummy: 1 if car is a sports- or luxury model 0.22 0.41

diesel car Dummy: 1 if car uses diesel 0.13 0.34

car vacation Dummy: 1 if household undertook
car vacation during the survey period 0.22 0.42

multiple car Dummy: 1 if Household has more than 1 car 0.28 0.45

# employed Number of employed household members 0.98 0.84

# college preparatory degree Number of household members with
a college preparatory degree 0.60 0.76

income Household income class (1-8) 5.06 1.38

new job Dummy: 1 if person changed the job last year 0.12 0.32

# adults Number of adult household members 1.82 0.70

% female Share of female household members 0.51 0.30

# children Number of children younger than 17 0.47 0.84

city Dummy: 1 if household resides in a city 0.43 0.49

insurance cost Car insurance cost class (1-12) 6.12 2.49
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zip code delineation of the MOP data, a Geographic Information System was used to

merge in the insurance cost variable.

3 Key Definitions and the Rebound Effect

In this section, we present the definitions of the key variables of our analysis, the pri-

ce of mobility services and energy efficiency, and provide a theoretical derivation of

the direct5 rebound effect that is due to efficiency improvements. The definition of

energy efficiency typically employed in the economic literature, see e. g. BINSWANGER

(2001:121) is given by:

µi =
si

ei

> 0, (1)

where the efficiency parameter µi characterizes the technology with which an amount

si of service i is provided and ei denotes the energy input employed for a service such

as mobility. For the specific example of individual conveyance, parameter µi designates

fuel efficiency, which can be measured in terms of vehicle kilometers per liter of fuel

input.

Efficiency definition (1) reflects the fact that the higher the efficiency µi of a given

technology, the less energy ei = si/µi is required for the provision of service i and,

hence, the lower is the amount of greenhouse gases that are emitted if fossil fuels are

used. Hence, the concept of energy efficiency is perfectly in line with BECKER’s (1965)

seminal work on household production, according to which households are, ultimate-

ly, not interested in the amount of energy required for a certain amount of service, but

in the energy service itself:

si = fi(ei, ti, ki, oi), (2)

where production function fi describes how households “produce” service i in the

5The literature distinguishes between direct and indirect rebound effects (e. g. GREENING and GREE-

NE 1997, GREENE et al. 1999). The latter arises from an income effect: lower per-unit cost of an energy

service implies - ceteris paribus - that real income grows. Given that indirect effects are difficult to quan-

tify, the overwhelming majority of empirical studies are confined to analyzing the direct rebound effect.
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amount of si by using time, ti, capital, ki, other market goods oi, and energy, ei. Based

on efficiency definition (1), it follows that the price psi
per unit of the energy service,

given by the ratio of service cost to service amount, is smaller the higher the efficiency

µi is:

psi
=

ei · pei

si

=
ei

si

· pei
=

pei

µi

. (3)

Along the lines of BECKER (1965), it is assumed that any households’s utility de-

pends solely on the amounts s1, ..., sn of services:

U = u(s1, s2, ..., sn) with
∂u

∂si

> 0 and
∂2u

∂s2
i

< 0 for i = 1, ..., n. (4)

The household’s available time budget T is split up into the hours tw spent on working

and the time necessary to produce services:

T = tw +
n∑

i=1

ti. (5)

With w denoting the wage rate, households face the budget constraint

tww =
n∑

i=1

peei + pkki + pooi, (6)

if the non-wage income is zero. pe and po indicate the prices of energy and other market

good inputs, respectively, while pk captures the annualized investment cost required

for service i.

The Lagrangian L for the utility maximization problem subject to budget cons-

traint (6) and time restriction (5) reads

L := u(s1, s2, ..., sn) − λ

[
n∑

i=1

(peei + pkki + pooi + wti) − wT

]
. (7)

If joint production is ruled out, the first-order condition with respect to service j is

given by
∂u

∂sj

= λ

[
pe

∂ej

∂sj

+ pk
∂kj

∂sj

+ po
∂oj

∂sj

+ w
∂tj
∂sj

]
. (8)

If efficiency improvements increase service demand sj , but do not alter the input of

time tj , capital kj , and other market goods oj , that is, if ∂tj
∂sj

= 0, ∂kj

∂sj
= 0, and ∂oj

∂sj
= 0, it

follows that the first-order condition (8) simplifies to

∂u

∂sj

= λ
[

psj

]
, (9)
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where we have employed price relationship (3), i. e. psi
= pe/µi, and ∂ej/∂sj = 1/µj ,

thereby exploiting efficiency definition (1).

Using this framework, the direct rebound effect, describing the increase in service

demand due to the improvement in the efficiency of providing service j, can be proved

as follows if the utility function U exhibits the typical properties given by (4).

Proposition:

ηµj
(sj) =

∂ ln sj

∂ ln µj

=
µj

sj

· ∂sj

∂µj

> 0,

if ∂u
∂sj

> 0 and ∂2u
∂s2

j
< 0 and if efficiency improvements do not alter the input of time

tj , capital kj , and market goods oj other than energy, that is, if ∂tj
∂sj

= 0, ∂kj

∂sj
= 0, and

∂oj

∂sj
= 0.

Proof: The first-order condition (9) can be solved for sj , since ∂u
∂sj

is invertible due to
∂2u
∂s2

j
< 0. Hence, the amount of service j is given by

sj = (
∂u

∂sj

)−1(λ
pe

µj

),

where ( ∂u
∂sj

)−1 is the inverse of ∂u
∂sj

. Using the differentiation rule for inverse functions,

it follows that

∂sj

∂µj

=
∂

∂µj

[(
∂u

∂sj

)−1(λ
pe

µj

)] =
1

∂
∂µj

[
∂u(λ pe

µj
)

∂sj
]
= − 1

∂2u
∂s2

· λ pe

µ2
j

> 0,

since ∂2u
∂s2

j
< 0 and λ > 0, which results from ∂u

∂sj
> 0 and first-order condition (8). The

positivity of ηµj
(sj) then holds due to ∂sj

∂µj
> 0. This theoretical hypothesis is intuitive:

Households will usually demand more of a service when it becomes cheaper due to an

efficiency improvement.

4 Methodology

The reliance on household-level panel data to test this hypothesis raises several con-

ceptual and empirical issues, the most fundamental of which is the presence of null
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values in the data. As 20% of the households do not own a car, the observation on di-

stance driven is consequently recorded as zero. To accommodate this feature of the da-

ta, we employ two censored regression procedures – the Two-Part and Heckit models

– that order observations into two regimes defined by whether the household owns a

car.

4.1 The Models

The first stage of both procedures, referred to as the selector equation, defines a dicho-

tomous variable indicating the regime into which the observation falls:

S = 1, if S∗ = X1τ + ε1 > 0 and S = 0, if S∗ ≤ 0 (10)

where S∗ is a latent variable indicating the utility from car ownership, S is an indicator

for car ownership status, matrix X1 includes the determinants of this status, τ is a

vector of associated parameter estimates, and ε1 is an error term assumed to have a

standard normal distribution.

In addition to estimating τ using the probit maximum likelihood method, the

second stage of the models, referred to as the outcome equation, involves estimating

the parameters β via an OLS regression conditional on care use, S = 1:

E[y|S = 1,X2] = X2β + E(ε2|y > 0,X2), (11)

where y is the dependent variable, measured here either as the kilometers of vehicle

travel or fuel consumption over the six week survey, X2 includes the determinants of

y, and ε2 is the error term, assumed to be normally distributed.

The key distinction between the Two-Part Model (2PM) and HECKMAN’s two-

stage sample selection model, frequently called the Heckit model, is the inclusion of

an additional regressor - the inverse Mill’s ratio (IVM) - in the second stage regression

to control for potential selectivity bias (HECKMAN 1979). In omitting this regressor, the

2PM imposes the assumption that E(ε2|y > 0,X2) = 0. The relative merits of this sim-

plification has been the subject of a vigorous debate in the literature (HAY and OLSON,
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1984; DUAN et al. 1984; LUENG and YU 1996; DOW and NORTON, 2003), with much of

the discussion focusing on their underlying assumptions and numerical properties.

Although we explore the use of both models, two considerations led us to select

the 2PM as the superior alternative for this analysis. First, the estimated coefficient on

the IVM, presented in the Appendix, is insignificant, suggesting that sample selectivi-

ty may not be an issue with these data. Second, as discussed by DOW and NORTON

(2003), a more substantive consideration in choosing between the two models is whe-

ther interest centers on the actual or potential outcome of the phenomena under study.

In the present context, the potential outcome y∗ addresses the distance a hou-

sehold would drive were it to own a car, irrespective of actual ownership, while the

actual outcome y addresses the observed distance driven, equaling zero if no car is

owned (y = 0). Whereas the actual outcome y is a fully-observed variable, the potenti-

al outcome y∗ is a latent variable that is only partially observed, namely for those who

have chosen to own a car: y∗ = y if y > 0, but y∗ is unidentified if y = 0, i. e. for tho-

se who have refrained from car ownership. While the Heckit estimator was designed

to address selection bias for analyzing potential outcomes, it incorporates features that

make it often perform worse than the 2PM when analyzing actual outcomes (DOW and

NORTON 2003:6). Accordingly, the 2PM is deemed here the more appropriate modeling

specification to estimate the effect of fuel prices and socioeconomic traits on actual di-

stance driven or actual fuel consumption, whereas estimating the impact on potential

distances or consumption does not conceptually fit to the goal of our study.

4.2 Calculation of Elasticities

For estimating the marginal effects of socioeconomic determinants on actual distances

or actual fuel consumption, it is necessary to take account of the likelihood that a hou-

sehold refrains from owning a car, P (y = 0). Hence, the prediction of the dependent

variable consists of two parts, with the first part being the probability of owning the car,

P (y > 0) = Φ(X1τ ), which results from the first stage (10) of the 2PM, and the second
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part being the conditional expectation E[y|y > 0] = X2β from the second stage (11):

E[y] = P (y > 0) · E[y|y > 0] + P (y = 0) · E[y|y = 0]

= P (y > 0) · E[y|y > 0] + 0 = Φ(X1τ ) · X2β. (12)

As our interest centers on elasticities, we now present the required formulae for

the corresponding 2PM with a logged dependent variable z = ln(y) and normal ho-

moskedastic errors ε2 with constant variance Var(ε2) = σ2, following DOW and NOR-

TON (2003:11). Rather than by (12), actual outcomes are in this case predicted by6 :

E[y] = Φ(X1τ ) · exp{X2β + 0.5 · σ2}. (13)

Using the product and chain rules of differentiation and the fact that the derivative of

the cumulative normal function Φ equals the normal density function φ, the marginal

effect can be derived as follows:

∂E[y]

∂xk

= βk · E[y] + τk · φ(X1τ ) · exp{X2β + .5 · σ2}

= βk · E[y] + τk · φ(X1τ )

Φ(X1τ )
· E[y] (14)

By dividing expression (14) by E(y), the elasticity formula for logged explanatory va-

riables (zk = ln xk) follows immediately:

ηxk
=

∂ ln E[y]

∂ ln xk

=
∂ ln E[y]

∂zk

=
∂E[y]

∂zk

· 1

E[y]
= βk + τk · φ(X1τ )

Φ(X1τ )
. (15)

If the explanatory variable is in levels, the respective elasticity can be obtained from

(15):

ηxj
=

∂ ln E[y]

∂ ln xj

=
∂ ln E[y]

∂xj

· xj = [βj + τj · φ(X1τ )

Φ(X1τ )
] · xj (16)

To handle the case of dummy variables Dk, we employ the following relative diffe-

rences, thereby using the formula of the expected value (13):

(E[y|Dk = 1] − E[y|Dk = 0])/E[y]. (17)

6If z = ln(y) has a normal distribution with an expected value of E(z) = µ and variance σ2, then y

has a lognormal distribution and an expected value of E(y) = exp{µ + 0.5 · σ2}.
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4.3 Model Specifications

The model specifications presented here are based on the logged version (13) of the

2PM and are intimately connected with the definitions of the rebound effect cata-

logued by FRONDEL, PETERS, and VANCE (2008:148, 149). Referring to their Defini-

tion 1, i. e. the elasticity of service demand with respect to efficiency, ηµ(s) = ∂ ln s
∂ ln µ

, the

dependent variable of our Model 1 is the log of kilometers traveled, ln(s):

E[ln(s)] = Φ(X1τ ) · exp{βpe ln(pe) + βµ ln(µ) + X2β + 0.5 · σ2}. (18)

where the set of explanatory variables specifically includes the logged price of fuel per

liter, ln(pe), as well as the log of kilometers traveled per liter, ln(µ).

A particular feature of Model 1 bears noting: It is to be expected that the elasticity

of service demand with respect to efficiency estimated from this model is of the same

order as the elasticity of service demand with respect to fuel prices:

H0 : ηµ(s) = −ηpe(s). (19)

This null hypothesis is intuitive: for constant fuel prices pe, raising the energy efficiency

µ should have the same effect on service demand, i. e. the distance traveled, as falling

fuel prices pe given a constant energy efficiency µ. It is precisely the validity of H0

that gives rise to the assumption that both price and rebound effects, identified here

by ηµ(s), are just responses of the same order to changes in the unit costs of energy

services, yet going into opposite directions.

Since Definition 2 of the rebound effect is based on the negative own-price elasti-

city of service demand, ηps(s), the dependent variable of the corresponding Model 2

is the same as in Model 1, but rather than the logged price of fuel per liter, the set of

explanatory variables includes the logged price of service demand, ln(ps):

E[ln(s)] = Φ(X1τ ) · exp{βps ln(ps) + X2β + 0.5 · σ2}, (20)

Recognizing that ps = pe

µ
, and that ln(ps) = ln(pe) − ln(µ), it can be seen that this

specification is functionally equivalent to Model 1 if hypothesis (19) holds. In this case,

it is βpe = −βµ.
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Referring to Definition 3 of the rebound effect, which is based on the negative

own-price elasticity of energy consumption, ηpe(e), the dependent variable of the cor-

responding Model 3 is the logged liters of fuel consumed:

E[ln(e)] = Φ(X1τ ) · exp{βpe ln(pe) + X2β + 0.5 · σ2}, (21)

where the set of explanatory variables specifically includes the logged price of fuel

per liter, ln(pe). The remaining suite of variables included in these models measure the

individual, household, and automobile attributes that are hypothesized to influence

the extent of motorized travel.

Finally, it bears noting that it is possible to examine whether Model 3 differs from

Model 2 by testing the hypothesis

H0 : βpe = −1 (22)

on the basis of the estimates of Model 3 and, additionally, by testing the hypothesis

H0 : βps = −1 (23)

on the basis of the estimates of Model 2. Only if both hypotheses were to hold would

Model 2 be identical to Model 3 (see FRONDEL, PETERS, and VANCE (2008:151)).

To exploit the panel dimension of the data, we employ the fixed-effects estimator

in the analysis of distance traveled. The random-effects estimator was also explored,

but, while many of the coefficients were similar to the fixed effects, this model was

rejected by a standard HAUSMAN test. A key virtue of the fixed-effects model is to

control for the influence of time-invariant unobservable variables that could otherwise

bias the estimated coefficients. This is a particularly useful feature in the present ap-

plication given that the measures of fuel efficiency used in Definitions 1 and 2 of the

rebound effect may be vulnerable to endogeneity bias.7

Households that drive longer distances because they live in rural areas, for ex-

ample, may select more efficient cars, thereby leading to an inflated estimate of the

7This source of bias does not afflict the estimates corresponding to Definition 3, as Model 3 does not

include fuel efficiency.

16



rebound effect. To the extent that the unobserved characteristics that affect both fuel

economy and vehicle mileage remain constant over time, the fixed effects model will

control for this source of bias. Although it is not possible to exclude the possibility of

relevant time-variant unobservables, we believe that the range of explanatory varia-

bles – including the number of children, the number of employed, and job changes –

provides reasonably good coverage of temporal changes whose absence could induce

biases.

5 Empirical Results

Table 2 presents elasticity estimates corresponding to each of the three definitions of

the rebound effect, conditional on car ownership. To focus on the salient results, we

refrain here from reporting the coefficients of the first-stage Probit models and instead

present these in the appendix. It bears noting, however, that the Probit results are re-

flected in both the estimated coefficients and standard errors presented in Table 2 via

the application of Equations (15) - (17). Because these equations comprise multiple pa-

rameters that make analytical computation of the variance impossible, we apply the

Delta method to calculate statistical significance. This approach uses a first-order Tay-

lor expansion to create a linear approximation of a non-linear function, after which the

variance and measures of statistical significance can be computed.

Turning first to the coefficients on ln(µ), ln(pe), ln(ps), the estimated rebound ef-

fects are all seen to be highly significant, ranging from 0.35 in Model 3 to 0.52 in Model

1. Although these estimates are somewhat lower than those of FRONDEL, PETERS, and

VANCE (2008), they are nevertheless substantial, and suggest that between 35% and

52% of the potential energy savings due to an efficiency improvement is lost to increa-

sed driving.
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Table 2: Estimation Results of the Two-Part-Model.

Model 1 Model 2 Model 3

Dependent Variable ln(s) ln(s) ln(e)

Elast.s Std. Errors Elast.s Std. Errors Elast.s Std. Errors

ln(µ) ∗∗ 0.515 (0.090) – – – –

ln(pe) ∗∗-0.406 (0.134) – – ∗∗ -0.348 (0.134)

ln(ps) – – ∗∗-0.490 (0.073) – –

car age ∗∗-0.027 (0.005) ∗∗-0.027 (0.005) ∗∗ -0.026 (0.005)

diesel car 0.164 (0.097) 0.151 (0.095) 0.085 (0.052)

premium car ∗∗ 0.360 (0.073) ∗∗ 0.354 (0.072) ∗∗ 0.451 (0.043)

multiple car ∗∗ -0.187 (0.059) ∗∗-0.186 (0.059) ∗∗ -0.190 (0.038)

vacation with car ∗∗ 0.291 (0.033) ∗∗ 0.292 (0.033) ∗∗ 0.284 (0.023)

# adults ∗ 0.197 (0.088) ∗0.200 (0.085) ∗0.205 (0.089)

% females -0.024 (0.050) -0.023 (0.049) -0.026 (0.051)

# children -0.022 (0.021) -0.022 (0.021) -0.015 (0.020)

# college preparatory degree ∗-0.050 (0.025) ∗ -0.050 (0.024) -0.045 (0.025)

# employed -0.007 (0.034) -0.008 (0.034) 0.003 (0.033)

new job 0.021 (0.019) 0.021 (0.018) 0.019 (0.018)

income ∗∗ 0.455 (0.071) ∗∗ 0.456 (0.061) ∗∗ 0.434 (0.061)

H0 : βpe
= −1 F(1, 2.403) = ∗∗ 23.47

H0 : βps
= −1 F(1, 2.403) = ∗∗ 48.13

H0 : βµ = −βpe
F(1, 2.403) = 0.81

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively. Number of observations used

for estimation: 2,418.

Focusing specifically on the estimates from Model 1, we can additionally test

whether the impact of efficiency improvements on traveled distance is of the same

order as the effect of fuel prices: As reported in the ultimate row of the table, we can-

not reject this hypothesis, which translates into H0 : βµ = −βpe . Hence, there is no

reason, neither on a theoretical nor an empirical basis, to assume that the estimates

corresponding to Definitions 1 and 2 of the rebound effect as well as Models 1 and
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2 are principally different, a conclusion that is validated by the close estimates of the

whole range of regressors. Despite this closeness, Model 3 is not identical to Models 1

or 2, as is confirmed by the rejection of the null hypotheses that the price coefficients

in Models 3 and 2 are both -1.

With respect to the remaining control variables, most have either intuitive effects

or are statistically insignificant. Referencing the estimates from Model 1, older cars are

seen to be driven less while premium cars are driven more. Another important de-

terminant is whether a vacation with the car was undertaken over the survey period,

which results in a roughly 34% (=exp(0.29)-1) increase in distance traveled. Among the

significant sociodemographic variables, the number of adults and household income

both have positive effects, whereas the dummy indicating a multi-car household has a

negative effect, a likely reflection of the household’s ability to use cars other than the

one under observation. With respect to income, it bears noting that the (unreported)

unadjusted coefficient estimate that takes no account of the probability of a positive

outcome of car ownership is insignificant. That this distinction can result in qualitative-

ly different conclusions suggests the importance of correctly dealing with a censored

dependent variable when calculating elasticities.

To further explore the robustness of the results to the inclusion of the multi-car

households, we removed them from the data and re-estimated the model. As can be

gleaned from the results presented in Table 3, this omission has little bearing on the

conclusions drawn from the analysis. The most notable change is that the fuel-price

elasticity estimates become smaller in magnitude when multi-car households are in-

cluded in the sample. While the difference between the estimates is statistically minor

and should not be over-interpreted, one possible explanation is that a higher sensitivity

to fuel prices prevails among households that cannot substitute between cars.

We thus conclude that our estimates, be they based on Definition 1, 2, or 3 of the

rebound effect, are substantially larger than the typical effects obtained from the U.S.

transport sector. Using household survey data, GREENE, KAHN, and GIBSON(1999:1),

for instance, find a long-run “take back” of about 20% of potential energy savings, con-
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Table 3: Comparison of Rebound Effects with and without Multi-Car Households.

Model 1 Model 2 Model 3

Dependent Variable ln(s) ln(s) ln(e)

Elast.s Std. Errors Elast.s Std. Errors Elast.s Std. Errors

Without Multi-Car Households, Number of observations: 1,732

ln(µ) ∗ 0.518 (0.107) – – – –

ln(pe) ∗∗-0.528 (0.136) – – ∗∗ -0.486 (0.135)

ln(ps) – – ∗∗-0.521 (0.084) – –

With Multi-Car Households, Number of observations: 2,418

ln(µ) ∗∗ 0.515 (0.090) – – – –

ln(pe) ∗∗-0.406 (0.134) – – ∗∗ -0.348 (0.107)

ln(ps) – – ∗∗-0.490 (0.073) – –

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively.

firming the results of other U. S. studies using national and or state-level data. While

this issue has received relatively less scrutiny in the European context, our results fall at

the upper-end of those of WALKER and WIRL (1993), who estimate a long-run rebound

effect of 36% for Germany using aggregate time-series data.

6 Summary and Conclusion

While energy policy in Europe has traditionally relied heavily on fuel taxation, it is

currently undergoing a process of bifurcation, with an increasing reliance on fuel-

efficiency standards to reduce emissions. This shift is evidenced by the voluntary agree-

ment negotiated in 1998 between the EC and the European Automobile Manufacturers

Association stipulating the reduction of average emissions to 140g CO2/km by 2008, in

addition to subsequent legislation that would set additional targets for 2012. Although

such standards undoubtedly confer economic benefits in their own right, their associa-

ted implications for emissions depends fundamentally on the behavioral response to
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cheaper per-unit energy prices. To the extent that motorists drive more when costs of

driving are reduced, we would expect policies based on fuel taxation and those based

on fuel efficiency standards to have opposing effects on vehicle kilometers traveled, a

seeming incongruity that has largely escaped the notice of policy-makers.

The analysis pursued in this paper has attempted to inform the policy discus-

sion on this issue by estimating the magnitude of both fuel-price and fuel-efficiency

elasticities, using panel household data from Germany. Our most conservative esti-

mate of fuel-price elasticities amounts to -0.35, indicating that fuel taxation may have

a substantial impact in lowering fuel consumption and, hence, greenhouse gas emis-

sions. Of a similar magnitude, but opposite sign is our conservative estimate of the

fuel-efficiency elasticity of +0.52, suggesting a sizeable leakage in the potential emissi-

ons reductions from efficiency improvements commonly called rebound effect. Equally

noteworthy, we confirm the hypothesis that fuel-efficiency and price effects are simply

two sides of the same coin: behavioral changes due to varied unit cost of energy ser-

vices. In fact, the order of the effect of a change in the fuel price on driving turns out

to be statistically non-distinguishable from the impact of a change in fuel economy, a

circumstance that serves to highlight the inverse relationship between the effectiveness

of fuel taxes in reducing driving and the effect of efficiency standards in increasing it.

Taken together, these findings suggest that the current emphasis in Europe on

efficiency as a principle means to address environmental challenges (e.g. EC 2007) may

be misplaced. While such an emphasis has been a mainstay of energy policy in the

U.S. ever since the creation of the so-called CAFE standards in 1975, the fuel efficiency

of the passenger car fleet in the U.S. has long lagged behind that of Europe. Given

the divergent trajectories of automotive technologies on the European and American

markets, the different respective policy emphases with respect to fuel tax taxation, and

the evidence presented in this paper that driving costs and, hence, oil prices matter for

driving behavior, we conclude that the logic of introducing fuel efficiency standards to

reduce emissions is dubious.
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Appendix: Probit Estimation Results

Table A1: Probit Estimation Results for Car Ownership

Coeff.s Errors Elast.s Errors

# adults ∗∗ .576 (.068) ∗∗ .091 (.011)

% female ∗∗ -.448 (.082) ∗∗ -.071 (.014)

# children .028 (.063) .005 (.010)

# college preparatory degree ∗ -.144 (.060) ∗-.023 (.010)

# employed .100 (.061) .016 (.009)

new job .005 (.119) .001 (.019)

income ∗∗ .594 (.035) ∗∗ .094 (.006)

city ∗∗ -.308 (.074) ∗∗ -.050 (.013)

insurance cost ∗∗ -.056 (.012) ∗∗ -.009 (.002)

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level,

respectively. Number of observations used for estimation: 3,022.

The key distinction between the Two-Part and Heckit model is the inclusion of the

inverse Mill’s ratio (IVM) in the second stage to control for potential selectivity bias.

To effectively identify the Heckit model requires the inclusion of at least one variable

that uniquely determines the discrete choice of car ownership but not the continuous

choice of distance traveled. In the present example, this selection can be informed by

consideration of the fixed costs incurred with owning a car but not with driving. As

an identifying variable, we include the cost insurance index compiled by the German

Insurance Association. Consistent with expectations, Table A1 shows that this variable

has a negative effect on the probability of car ownership, as increases in the index mea-

sure higher insurance costs. Table A2 indicates, however, that the estimated coefficient

on the IVM is insignificant, suggesting that sample selectivity may not be an issue with

these data. The remaining results in Table A2 are of approximately the same magnitude

as those in Table 2.
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Table A2: Estimation Results of the Heckit-Model.

Model 1 Model 2 Model 3

Dependent Variable ln(s) ln(s) ln(e)

Elast.s Std. Errors Elast.s Std. Errors Elast.s Std. Errors

ln(µ) ∗∗ 0.515 (0.090) – – – –

ln(pe) ∗∗-0.410 (0.135) – – ∗∗ -0.470 (0.138)

ln(ps) – – ∗∗ -0.491 (0.048) – –

car age ∗∗-0.027 (0.005) ∗∗ -0.027 (0.003) ∗∗ -0.029 (0.005)

diesel car 0.163 (0.010) 0.150 (0.050) ∗ 0.248 (0.097)

premium car ∗∗ 0.361 (0.073) ∗∗ 0.355 (0.043) ∗∗ 0.263 (0.075)

multiple car ∗∗ -0.189 (0.060) ∗∗ -0.188 (0.037) ∗∗ -0.186 (0.059)

vacation with car ∗∗ 0.291 (0.033) ∗∗ 0.291 (0.022) ∗∗ 0.299 (0.034)

# adults ∗∗ 0.278 (0.100) ∗∗ 0.281 (0.096) ∗∗ 0.271 (0.097)

% females -0.046 (0.051) -0.045 (0.051) -0.044 (0.051)

# children ∗-0.020 (0.022) -0.020 (0.022) -0.026 (0.023)

# college preparatory degree ∗-0.057 (0.026) ∗ -0.057 (0.026) ∗ -0.062 (0.027)

# employed 0.001 (0.036) -0.001 (0.036) -0.010 (0.037)

new job 0.021 (0.020) 0.021 (0.019) 0.022 (0.019)

income ∗∗ 0.716 (0.137) ∗∗ 0.720 (0.137) ∗∗ 0.740 (0.140)

inverse Mill’s ratio 0.066 (0.106) 0.069 (0.082) ∗∗ 0.068 (0.110)

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively. Number of observations

used for estimation: 2,418.
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